smart spaces
Recently Published Documents


TOTAL DOCUMENTS

455
(FIVE YEARS 94)

H-INDEX

21
(FIVE YEARS 4)

2022 ◽  
Vol 6 (1) ◽  
pp. 1-26
Author(s):  
Chao Chen ◽  
Abdelsalam (Sumi) Helal ◽  
Zhi Jin ◽  
Mingyue Zhang ◽  
Choonhwa Lee

Smart spaces such as smart homes deliver digital services to optimize space use and enhance user experience. They are composed of an Internet of Things (IoT), people, and physical content. They differ from traditional computer systems in that their cyber-physical nature ties intimately with the users and the built environment. The impact of ill-programmed applications in such spaces goes beyond loss of data or a computer crash, risking potentially physical harm to the space and its users. Ensuring smart space safety is therefore critically important to successfully deliver intimate and convenient services surrounding our daily lives. By modeling smart space as a highly dynamic database, we present IoT Transactions, an analogy to database transactions, as an abstraction for programming and executing the services as the handling of the devices in smart space. Unlike traditional database management systems that take a “clear room approach,” smart spaces take a “dirty room approach” where imperfection and unattainability of full control and guarantees are the new normal. We identify Atomicity, Isolation, Integrity and Durability (AI 2 D) as the set of properties necessary to define the safe runtime behavior for IoT transactions for maintaining “permissible device settings” of execution and to avoid or detect and resolve “impermissible settings.” Furthermore, we introduce a lock protocol, utilizing variations of lock concepts, that enforces AI 2 D safety properties during transaction processing. We show a brief proof of the protocol correctness and a detailed analytical model to evaluate its performance.


2021 ◽  
Vol 2 (4) ◽  
pp. 1-20
Author(s):  
Changyuan Lin ◽  
Hamzeh Khazaei ◽  
Andrew Walenstein ◽  
Andrew Malton

Embedded sensors and smart devices have turned the environments around us into smart spaces that could automatically evolve, depending on the needs of users, and adapt to the new conditions. While smart spaces are beneficial and desired in many aspects, they could be compromised and expose privacy, security, or render the whole environment a hostile space in which regular tasks cannot be accomplished anymore. In fact, ensuring the security of smart spaces is a very challenging task due to the heterogeneity of devices, vast attack surface, and device resource limitations. The key objective of this study is to minimize the manual work in enforcing the security of smart spaces by leveraging the autonomic computing paradigm in the management of IoT environments. More specifically, we strive to build an autonomic manager that can monitor the smart space continuously, analyze the context, plan and execute countermeasures to maintain the desired level of security, and reduce liability and risks of security breaches. We follow the microservice architecture pattern and propose a generic ontology named Secure Smart Space Ontology (SSSO) for describing dynamic contextual information in security-enhanced smart spaces. Based on SSSO, we build an autonomic security manager with four layers that continuously monitors the managed spaces, analyzes contextual information and events, and automatically plans and implements adaptive security policies. As the evaluation, focusing on a current BlackBerry customer problem, we deployed the proposed autonomic security manager to maintain the security of a smart conference room with 32 devices and 66 services. The high performance of the proposed solution was also evaluated on a large-scale deployment with over 1.8 million triples.


2021 ◽  
Author(s):  
Mohammed Al-Shaboti

<p><b>The increasing use of Internet of Things (IoT) devices raises security and privacy concerns. In smart spaces, multiple IoT devices are simultaneously used to fulfil user activity functions. However, these devices exhibit several security vulnerabilities that can compromise smart space security and privacy. The ability of fine-grained control network access in IoT devices and application messages can significantly reduce the risk resulting from the exploitation of IoT vulnerabilities due to unauthorised access, thereby improving smart space security. A well-recognised approach in the literature for IoT access control is to use pre-defined access policies to allow the necessary connections for a device to function correctly. However, these policies allow access to all device functions (i.e. coarse-grained access) including those functions that are not used by any user activity.</b></p> <p>The overall goal of this thesis is to develop an access control framework and techniques to achieve fine-grained access policies by using user inputs. The user inputs will be utilised to select devices to fulfil user activities aiming to build an access policy from the minimum access required for each device function. In this thesis, the use of user inputs to meet user security and privacy requirements in single- and multi-user smart spaces is studied.</p> <p>The main contributions are as follows: first, an access control framework that enables users to tailor IoT device policies to meet their security and privacy requirements is proposed. Validation results of the framework show the effectiveness of integrating user access rules into the existing security countermeasures (i.e. pre-defined policies and intrusion detection systems – IDS) to enforce user security and privacy.</p> <p>Second, the problem of selecting preferable devices to fulfil user activity functions is formulated as an optimisation problem. The optimisation problem is then solved by local and global optimisation searching algorithms that are guided by a developed user preference quantified model. The results show that global optimisation search algorithms such as Genetic Algorithm (GA) find the solution more effectively and efficiently than local search algorithms such as simulated annealing and hill-climbing.</p> <p>Third, sharing access control for multi-user smart spaces is proposed. Traditional access control that considers a single user is not suitable for multi-user smart spaces, where users share their IoT devices. The sharing between multiple users poses challenges different than in single-user access control. For example, users may abuse using shared devices and use vulnerable ones. This thesis addresses these two challenges through two contributions. First, it proposes a novel sharing policy language that enables users to precisely define their sharing policy. Second, this thesis formulates the sharing policies as constraints in the context of an optimisation problem with the objective function that maximises the use of secure devices. Results show that the IoT sharing issue can naturally be translated into an integer linear programming (ILP) problem and effectively solved using off-the-shelf ILP solvers.</p> <p>Fourth, this thesis explores the feasibility and practicality of the fine-grained access policy enforcement through a smart home case study. A case study is built using a hub-based architecture that uses Web of Things (WoT) technology. WoT provides a device semantic description that includes device functions with the corresponding Uniform Resource Identifier (URI) which is used to build access control policies. The case study results show that policy enforcement can be effectively achieved by directing network traffic through a device proxy for each IoT device to enforce application access control without introducing statistically significant overhead on the user activity running time.</p> <p>In summary, this thesis studies the use of user inputs to derive fine-grained access control in smart spaces. For a single-user access control system, this thesis considers using manual rules and user preferences in small and dense smart spaces, respectively. For a multi-user access control system, this thesis proposes a secure sharing system supported by a sharing policy language to share and use IoT devices securely. For each scenario analysed, user input is utilised to derive fine-grained access policies. Enforcement of these policies has been explored by implementing a smart space case study using WoT technology. The overall results show that user preferences and sharing policies can be used to derive fine-grained access policies that are transparent to users and meet their security and privacy requirements.</p>


2021 ◽  
Author(s):  
Mohammed Al-Shaboti

<p><b>The increasing use of Internet of Things (IoT) devices raises security and privacy concerns. In smart spaces, multiple IoT devices are simultaneously used to fulfil user activity functions. However, these devices exhibit several security vulnerabilities that can compromise smart space security and privacy. The ability of fine-grained control network access in IoT devices and application messages can significantly reduce the risk resulting from the exploitation of IoT vulnerabilities due to unauthorised access, thereby improving smart space security. A well-recognised approach in the literature for IoT access control is to use pre-defined access policies to allow the necessary connections for a device to function correctly. However, these policies allow access to all device functions (i.e. coarse-grained access) including those functions that are not used by any user activity.</b></p> <p>The overall goal of this thesis is to develop an access control framework and techniques to achieve fine-grained access policies by using user inputs. The user inputs will be utilised to select devices to fulfil user activities aiming to build an access policy from the minimum access required for each device function. In this thesis, the use of user inputs to meet user security and privacy requirements in single- and multi-user smart spaces is studied.</p> <p>The main contributions are as follows: first, an access control framework that enables users to tailor IoT device policies to meet their security and privacy requirements is proposed. Validation results of the framework show the effectiveness of integrating user access rules into the existing security countermeasures (i.e. pre-defined policies and intrusion detection systems – IDS) to enforce user security and privacy.</p> <p>Second, the problem of selecting preferable devices to fulfil user activity functions is formulated as an optimisation problem. The optimisation problem is then solved by local and global optimisation searching algorithms that are guided by a developed user preference quantified model. The results show that global optimisation search algorithms such as Genetic Algorithm (GA) find the solution more effectively and efficiently than local search algorithms such as simulated annealing and hill-climbing.</p> <p>Third, sharing access control for multi-user smart spaces is proposed. Traditional access control that considers a single user is not suitable for multi-user smart spaces, where users share their IoT devices. The sharing between multiple users poses challenges different than in single-user access control. For example, users may abuse using shared devices and use vulnerable ones. This thesis addresses these two challenges through two contributions. First, it proposes a novel sharing policy language that enables users to precisely define their sharing policy. Second, this thesis formulates the sharing policies as constraints in the context of an optimisation problem with the objective function that maximises the use of secure devices. Results show that the IoT sharing issue can naturally be translated into an integer linear programming (ILP) problem and effectively solved using off-the-shelf ILP solvers.</p> <p>Fourth, this thesis explores the feasibility and practicality of the fine-grained access policy enforcement through a smart home case study. A case study is built using a hub-based architecture that uses Web of Things (WoT) technology. WoT provides a device semantic description that includes device functions with the corresponding Uniform Resource Identifier (URI) which is used to build access control policies. The case study results show that policy enforcement can be effectively achieved by directing network traffic through a device proxy for each IoT device to enforce application access control without introducing statistically significant overhead on the user activity running time.</p> <p>In summary, this thesis studies the use of user inputs to derive fine-grained access control in smart spaces. For a single-user access control system, this thesis considers using manual rules and user preferences in small and dense smart spaces, respectively. For a multi-user access control system, this thesis proposes a secure sharing system supported by a sharing policy language to share and use IoT devices securely. For each scenario analysed, user input is utilised to derive fine-grained access policies. Enforcement of these policies has been explored by implementing a smart space case study using WoT technology. The overall results show that user preferences and sharing policies can be used to derive fine-grained access policies that are transparent to users and meet their security and privacy requirements.</p>


2021 ◽  
Author(s):  
Mohammed Al-Shaboti

<p><b>The increasing use of Internet of Things (IoT) devices raises security and privacy concerns. In smart spaces, multiple IoT devices are simultaneously used to fulfil user activity functions. However, these devices exhibit several security vulnerabilities that can compromise smart space security and privacy. The ability of fine-grained control network access in IoT devices and application messages can significantly reduce the risk resulting from the exploitation of IoT vulnerabilities due to unauthorised access, thereby improving smart space security. A well-recognised approach in the literature for IoT access control is to use pre-defined access policies to allow the necessary connections for a device to function correctly. However, these policies allow access to all device functions (i.e. coarse-grained access) including those functions that are not used by any user activity.</b></p> <p>The overall goal of this thesis is to develop an access control framework and techniques to achieve fine-grained access policies by using user inputs. The user inputs will be utilised to select devices to fulfil user activities aiming to build an access policy from the minimum access required for each device function. In this thesis, the use of user inputs to meet user security and privacy requirements in single- and multi-user smart spaces is studied.</p> <p>The main contributions are as follows: first, an access control framework that enables users to tailor IoT device policies to meet their security and privacy requirements is proposed. Validation results of the framework show the effectiveness of integrating user access rules into the existing security countermeasures (i.e. pre-defined policies and intrusion detection systems – IDS) to enforce user security and privacy.</p> <p>Second, the problem of selecting preferable devices to fulfil user activity functions is formulated as an optimisation problem. The optimisation problem is then solved by local and global optimisation searching algorithms that are guided by a developed user preference quantified model. The results show that global optimisation search algorithms such as Genetic Algorithm (GA) find the solution more effectively and efficiently than local search algorithms such as simulated annealing and hill-climbing.</p> <p>Third, sharing access control for multi-user smart spaces is proposed. Traditional access control that considers a single user is not suitable for multi-user smart spaces, where users share their IoT devices. The sharing between multiple users poses challenges different than in single-user access control. For example, users may abuse using shared devices and use vulnerable ones. This thesis addresses these two challenges through two contributions. First, it proposes a novel sharing policy language that enables users to precisely define their sharing policy. Second, this thesis formulates the sharing policies as constraints in the context of an optimisation problem with the objective function that maximises the use of secure devices. Results show that the IoT sharing issue can naturally be translated into an integer linear programming (ILP) problem and effectively solved using off-the-shelf ILP solvers.</p> <p>Fourth, this thesis explores the feasibility and practicality of the fine-grained access policy enforcement through a smart home case study. A case study is built using a hub-based architecture that uses Web of Things (WoT) technology. WoT provides a device semantic description that includes device functions with the corresponding Uniform Resource Identifier (URI) which is used to build access control policies. The case study results show that policy enforcement can be effectively achieved by directing network traffic through a device proxy for each IoT device to enforce application access control without introducing statistically significant overhead on the user activity running time.</p> <p>In summary, this thesis studies the use of user inputs to derive fine-grained access control in smart spaces. For a single-user access control system, this thesis considers using manual rules and user preferences in small and dense smart spaces, respectively. For a multi-user access control system, this thesis proposes a secure sharing system supported by a sharing policy language to share and use IoT devices securely. For each scenario analysed, user input is utilised to derive fine-grained access policies. Enforcement of these policies has been explored by implementing a smart space case study using WoT technology. The overall results show that user preferences and sharing policies can be used to derive fine-grained access policies that are transparent to users and meet their security and privacy requirements.</p>


2021 ◽  
Author(s):  
Mohammed Al-Shaboti

<p><b>The increasing use of Internet of Things (IoT) devices raises security and privacy concerns. In smart spaces, multiple IoT devices are simultaneously used to fulfil user activity functions. However, these devices exhibit several security vulnerabilities that can compromise smart space security and privacy. The ability of fine-grained control network access in IoT devices and application messages can significantly reduce the risk resulting from the exploitation of IoT vulnerabilities due to unauthorised access, thereby improving smart space security. A well-recognised approach in the literature for IoT access control is to use pre-defined access policies to allow the necessary connections for a device to function correctly. However, these policies allow access to all device functions (i.e. coarse-grained access) including those functions that are not used by any user activity.</b></p> <p>The overall goal of this thesis is to develop an access control framework and techniques to achieve fine-grained access policies by using user inputs. The user inputs will be utilised to select devices to fulfil user activities aiming to build an access policy from the minimum access required for each device function. In this thesis, the use of user inputs to meet user security and privacy requirements in single- and multi-user smart spaces is studied.</p> <p>The main contributions are as follows: first, an access control framework that enables users to tailor IoT device policies to meet their security and privacy requirements is proposed. Validation results of the framework show the effectiveness of integrating user access rules into the existing security countermeasures (i.e. pre-defined policies and intrusion detection systems – IDS) to enforce user security and privacy.</p> <p>Second, the problem of selecting preferable devices to fulfil user activity functions is formulated as an optimisation problem. The optimisation problem is then solved by local and global optimisation searching algorithms that are guided by a developed user preference quantified model. The results show that global optimisation search algorithms such as Genetic Algorithm (GA) find the solution more effectively and efficiently than local search algorithms such as simulated annealing and hill-climbing.</p> <p>Third, sharing access control for multi-user smart spaces is proposed. Traditional access control that considers a single user is not suitable for multi-user smart spaces, where users share their IoT devices. The sharing between multiple users poses challenges different than in single-user access control. For example, users may abuse using shared devices and use vulnerable ones. This thesis addresses these two challenges through two contributions. First, it proposes a novel sharing policy language that enables users to precisely define their sharing policy. Second, this thesis formulates the sharing policies as constraints in the context of an optimisation problem with the objective function that maximises the use of secure devices. Results show that the IoT sharing issue can naturally be translated into an integer linear programming (ILP) problem and effectively solved using off-the-shelf ILP solvers.</p> <p>Fourth, this thesis explores the feasibility and practicality of the fine-grained access policy enforcement through a smart home case study. A case study is built using a hub-based architecture that uses Web of Things (WoT) technology. WoT provides a device semantic description that includes device functions with the corresponding Uniform Resource Identifier (URI) which is used to build access control policies. The case study results show that policy enforcement can be effectively achieved by directing network traffic through a device proxy for each IoT device to enforce application access control without introducing statistically significant overhead on the user activity running time.</p> <p>In summary, this thesis studies the use of user inputs to derive fine-grained access control in smart spaces. For a single-user access control system, this thesis considers using manual rules and user preferences in small and dense smart spaces, respectively. For a multi-user access control system, this thesis proposes a secure sharing system supported by a sharing policy language to share and use IoT devices securely. For each scenario analysed, user input is utilised to derive fine-grained access policies. Enforcement of these policies has been explored by implementing a smart space case study using WoT technology. The overall results show that user preferences and sharing policies can be used to derive fine-grained access policies that are transparent to users and meet their security and privacy requirements.</p>


Author(s):  
Naser Hossein Motlagh ◽  
Pupu Toivonen ◽  
Martha Arbayani Zaidan ◽  
Eemil Lagerspetz ◽  
Ella Peltonen ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3791
Author(s):  
Néstor Alzate-Mejía ◽  
Germán Santos-Boada ◽  
José Roberto de Almeida-Amazonas

Among the several emerging dimensioning, control and deployment of future communication network paradigms stands out the human-centric characteristic that creates an intricate relationship between telematics and human activities. The hard to model dynamics of user behavior introduces new uncertainties into these systems that give rise to difficult network resource management challenges. According to this context, this work reviews several decision-making computational methods under the influence of uncertainties. This work, by means of a systematic literature review, focuses on sensor-based Internet of Things scenarios such as Smart Spaces and Industry 4.0. According to our conclusions, it is mandatory to establish a means for modeling the human behavior context in order to improve resource assignment and management.


IoT ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 326-340
Author(s):  
Lorenzo Bracciale ◽  
Pierpaolo Loreti ◽  
Claudio Pisa ◽  
Alex Shahidi

The Internet of Things offers a wide range of possibilities that can be exploited more or less explicitly for user authentication, ranging from specifically designed systems including biometric devices to environmental sensors that can be opportunistically used to feed behavioural authentication systems. How to integrate all this information in a reliable way to get a continuous authentication service presents several open challenges. Among these: how to combine semi-trusted information coming from non-tamper-proof sensors, where to store such data avoiding a single point of failure, how to analyse data in a distributed way, which interface to use to provide an authentication service to a multitude of different services and applications. In this paper, we present a Blockchain-based architectural solution of a distributed system able to transform IoT interactions into useful data for an authentication system. The design includes: (i) a security procedure to certify users’ positions and identities, (ii) a secure storage to hold this information, and (iii) a service to dynamically assign a trust level to a user’s position. We call this system “Secure Path”.


Sign in / Sign up

Export Citation Format

Share Document