scholarly journals The Gauss map of a three-dimensional minimal surface

1981 ◽  
Vol 16 (1) ◽  
pp. 75-81
Author(s):  
Harold R. Parks
Author(s):  
Alexander I Bobenko ◽  
Yuri B Suris

We give an elaborated treatment of discrete isothermic surfaces and their analogues in different geometries (projective, Möbius, Laguerre and Lie). We find the core of the theory to be a novel characterization of discrete isothermic nets as Moutard nets. The latter are characterized by the existence of representatives in the space of homogeneous coordinates satisfying the discrete Moutard equation. Moutard nets admit also a projective geometric characterization as nets with planar faces with a five-point property: a vertex and its four diagonal neighbours span a three-dimensional space. Restricting the projective theory to quadrics, we obtain Moutard nets in sphere geometries. In particular, Moutard nets in Möbius geometry are shown to coincide with discrete isothermic nets. The five-point property, in this particular case, states that a vertex and its four diagonal neighbours lie on a common sphere, which is a novel characterization of discrete isothermic surfaces. Discrete Laguerre isothermic surfaces are defined through the corresponding five-plane property, which requires that a plane and its four diagonal neighbours share a common touching sphere. Equivalently, Laguerre isothermic surfaces are characterized by having an isothermic Gauss map. S-isothermic surfaces as an instance of Moutard nets in Lie geometry are also discussed.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 718
Author(s):  
Dong-Soo Kim ◽  
Young Ho Kim ◽  
Jinhua Qian

We characterize spheres and the tori, the product of the two plane circles immersed in the three-dimensional unit sphere, which are associated with the Laplace operator and the Gauss map defined by the elliptic linear Weingarten metric defined on closed surfaces in the three-dimensional sphere.


1991 ◽  
Vol 44 (3) ◽  
pp. 397-404
Author(s):  
Shinji Yamashita

Let D be a domain in the complex ω-plane and let x: D → R3 be a regular minimal surface. Let M(K) be the set of points ω0 ∈ D where the Gauss curvature K attains local minima: K(ω0) ≤ K(ω) for |ω – ω0| < δ(ω0), δ(ω0) < 0. The components of M(K) are of three types: isolated points; simple analytic arcs terminating nowhere in D; analytic Jordan curves in D. Components of the third type are related to the Gauss map.


1991 ◽  
Vol 124 ◽  
pp. 13-40 ◽  
Author(s):  
Hirotaka Fujimoto

In [5], the author proved that the Gauss map of a nonflat complete minimal surface immersed in R3 can omit at most four points of the sphere, and in [7] he revealed some relations between this result and the defect relation in Nevanlinna theory on value distribution of meromorphic functions. Afterwards, Mo and Osserman obtained an improvement of these results in their paper [11], which asserts that if the Gauss map of a nonflat complete minimal surface M immersed in R3 takes on five distinct values only a finite number of times, then M has finite total curvature. The author also gave modified defect relations for holomorphic maps of a Riemann surface with a complete conformai metric into the n-dimensional complex projective space Pn(C) and, as its application, he showed that, if the (generalized) Gauss map G of a complete minimal surface M immersed in Rm is nondegenerate, namely, the image G(M) is not contained in any hyperplane in Pm − 1(C), then it can omit at most m(m + 1)/2 hyperplanes in general position ([8]). Here, the number m(m + 1)/2 is best-possible for arbitrary odd numbers and some small even numbers m (see [6]). Recently, Ru showed that the “nondegenerate” assumption of the above result can be dropped ([13]). In this paper, we shall introduce a new definition of modified defect and prove a refined Modified defect relation. As its application, we shall give some improvements of the above-mentioned results in [5], [7], [8], [11] and [13].


Sign in / Sign up

Export Citation Format

Share Document