scholarly journals Characterization of Clifford Torus in Three-Spheres

Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 718
Author(s):  
Dong-Soo Kim ◽  
Young Ho Kim ◽  
Jinhua Qian

We characterize spheres and the tori, the product of the two plane circles immersed in the three-dimensional unit sphere, which are associated with the Laplace operator and the Gauss map defined by the elliptic linear Weingarten metric defined on closed surfaces in the three-dimensional sphere.

2013 ◽  
Vol 10 (03) ◽  
pp. 1220031 ◽  
Author(s):  
D. M. XUN ◽  
Q. H. LIU

A two-dimensional (2D) surface can be considered as three-dimensional (3D) shell whose thickness is negligible in comparison with the dimension of the whole system. The quantum mechanics on surface can be first formulated in the bulk and the limit of vanishing thickness is then taken. The gradient operator and the Laplace operator originally defined in bulk converges to the geometric ones on the surface, and the so-called geometric momentum and geometric potential are obtained. On the surface of 2D sphere the geometric momentum in the Monge parametrization is explicitly explored. Dirac's theory on second-class constrained motion is resorted to for accounting for the commutator [xi, pj] = iℏ(δij - xixj/r2) rather than [xi, pj] = iℏδij that does not hold true anymore. This geometric momentum is geometric invariant under parameters transformation, and self-adjoint.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1076 ◽  
Author(s):  
Sun Mi Jung ◽  
Young Ho Kim ◽  
Jinhua Qian

In studying spherical submanifolds as submanifolds of a round sphere, it is more relevant to consider the spherical Gauss map rather than the Gauss map of those defined by the oriented Grassmannian manifold induced from their ambient Euclidean space. In that sense, we study ruled surfaces in a three-dimensional sphere with finite-type and pointwise 1-type spherical Gauss map. Concerning integrability and geometry, we set up new characterizations of the Clifford torus and the great sphere of 3-sphere and construct new examples of spherical ruled surfaces in a three-dimensional sphere.


Author(s):  
Murat Kemal Karacan ◽  
Dae Won Yoon ◽  
Nural Yuksel

AbstractIn this paper, we classify two types ruled surfaces in the three dimensional simply isotropic space I13under the condition ∆xi= λixiwhere ∆ is the Laplace operator with respect to the first fundamental form and λ is a real number. We also give explicit forms of these surfaces.


Author(s):  
Alexander I Bobenko ◽  
Yuri B Suris

We give an elaborated treatment of discrete isothermic surfaces and their analogues in different geometries (projective, Möbius, Laguerre and Lie). We find the core of the theory to be a novel characterization of discrete isothermic nets as Moutard nets. The latter are characterized by the existence of representatives in the space of homogeneous coordinates satisfying the discrete Moutard equation. Moutard nets admit also a projective geometric characterization as nets with planar faces with a five-point property: a vertex and its four diagonal neighbours span a three-dimensional space. Restricting the projective theory to quadrics, we obtain Moutard nets in sphere geometries. In particular, Moutard nets in Möbius geometry are shown to coincide with discrete isothermic nets. The five-point property, in this particular case, states that a vertex and its four diagonal neighbours lie on a common sphere, which is a novel characterization of discrete isothermic surfaces. Discrete Laguerre isothermic surfaces are defined through the corresponding five-plane property, which requires that a plane and its four diagonal neighbours share a common touching sphere. Equivalently, Laguerre isothermic surfaces are characterized by having an isothermic Gauss map. S-isothermic surfaces as an instance of Moutard nets in Lie geometry are also discussed.


1993 ◽  
Vol 131 ◽  
pp. 127-133 ◽  
Author(s):  
Qing-Ming Cheng

Let Mn be an n-dimensional Riemannian manifold minimally immersed in the unit sphere Sn+p (1) of dimension n + p. When Mn is compact, Chern, do Carmo and Kobayashi [1] proved that if the square ‖h‖2 of length of the second fundamental form h in Mn is not more than , then either Mn is totallygeodesic, or Mn is the Veronese surface in S4 (1) or Mn is the Clifford torus .In this paper, we generalize the results due to Chern, do Carmo and Kobayashi [1] to complete Riemannian manifolds.


1992 ◽  
Vol 34 (3) ◽  
pp. 355-359 ◽  
Author(s):  
Christos Baikoussis ◽  
David E. Blair

Let M2 be a (connected) surface in Euclidean 3-space E3, and let G:M2→S2(1) ⊂ E3 be its Gauss map. Then, according to a theorem of E. A. Ruh and J. Vilms [3], M2 is a surface of constant mean curvature if and only if, as a map from M2 to S2(1), G is harmonic, or equivalently, if and only ifwhere δ is the Laplace operator on M2 corresponding to the induced metric on M2 from E3 and where G is seen as a map from M2to E3. A special case of (1.1) is given byi.e., the case where the Gauss map G:M2→E3 is an eigenfunction of the Laplacian δ on M2.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3311
Author(s):  
Nasser Bin Turki ◽  
Sharief Deshmukh ◽  
Gabriel-Eduard Vîlcu

In this paper, we find a characterization of the 3-sphere using 3-dimensional compact and simply connected trans-Sasakian manifolds of type (α,β).


2014 ◽  
Vol 14 (3) ◽  
pp. 393-409
Author(s):  
Régis Straubhaar

Abstract.Let (M,g) be a smooth and complete surface, $\Omega \subset M$ be a domain in M, and $\Delta _g$ be the Laplace operator on M. The spectrum of the Dirichlet–Laplace operator on Ω is a sequence $0 < \lambda _1(\Omega ) \le \lambda _2(\Omega ) \le \cdots \nearrow \infty $. A classical question is to ask what is the domain $\Omega ^*$ which minimizes $\lambda _m(\Omega )$ among all domains of a given area, and what is the value of the corresponding $\lambda _m(\Omega _m^*)$. The aim of this article is to present a numerical algorithm using shape optimization and based on the finite element method to find an approximation of a candidate for $\Omega _m^*$. Some verifications with existing numerical results are carried out for the first eigenvalues of domains in ℝ2. Furthermore, some investigations are presented in the two-dimensional sphere to illustrate the case of the positive curvature, in hyperbolic space for the negative curvature and in a hyperboloid for a non-constant curvature.


Sign in / Sign up

Export Citation Format

Share Document