Determination and heavy metals some Nigerian medical plants

2021 ◽  
Vol 13 (1) ◽  
pp. 153-157
Author(s):  
I.A Maigari ◽  
M.A. Auwal ◽  
M.B. Sulaiman ◽  
D.K. Nwankwo
Keyword(s):  

No Abstract.

2022 ◽  
Author(s):  
Victor Chaplygin ◽  
Tatiana Minkina ◽  
Saglara Mandzhieva ◽  
Dina Nevidomskaya ◽  
Natalia Chernikova ◽  
...  

Over the pastdecade, particular attention has been paid to studies of the chemical composition of medical plants to identify the possible negative consequences of using raw plant material polluted with heavy metals for the production of medical drugs. In our study, we analyzed the chemical composition of the medical plants growing in the impact area of the Novocherkassk power station. Specifically, the plants Artemisia austriaca, Poa pratensis and Elytrigia repenswere examined for the analysis.The content and distribution of Zn and Cd, which are most distributed in industrial emissions and belong to the first class of hazardous elements, were measured. The maximum permissible content (MPC) of Zn in the raw material of Artemisia austriaca and Elytrigia repens was found, as was the maximum content of Cd in all analyzed plants growing in the 5km area around thepower station. The plant Artemisia austriacawasfound to have Zn and Cd accumulation in itsabovegroundcomponents, while in Poa pratensis and Elytrigia repens, accumulation was in the roots. The morphobiometric parameters of the plants were mostly dependent on the soil properties, followed by the degree of technogenic load. The content of Zn and Cd in the medical drugs was higher than the MPC without visible features of heavy metal pollution and so these plants weredangerous for human health. Keywords: heavy metals, technogenic load, phytoreagents, morphometric parameters


Author(s):  
Randall W. Smith ◽  
John Dash

The structure of the air-water interface forms a boundary layer that involves biological ,chemical geological and physical processes in its formation. Freshwater and sea surface microlayers form at the air-water interface and include a diverse assemblage of organic matter, detritus, microorganisms, plankton and heavy metals. The sampling of microlayers and the examination of components is presently a significant area of study because of the input of anthropogenic materials and their accumulation at the air-water interface. The neustonic organisms present in this environment may be sensitive to the toxic components of these inputs. Hardy reports that over 20 different methods have been developed for sampling of microlayers, primarily for bulk chemical analysis. We report here the examination of microlayer films for the documentation of structure and composition.Baier and Gucinski reported the use of Langmuir-Blogett films obtained on germanium prisms for infrared spectroscopic analysis (IR-ATR) of components. The sampling of microlayers has been done by collecting fi1ms on glass plates and teflon drums, We found that microlayers could be collected on 11 mm glass cover slips by pulling a Langmuir-Blogett film from a surface microlayer. Comparative collections were made on methylcel1ulose filter pads. The films could be air-dried or preserved in Lugol's Iodine Several slicks or surface films were sampled in September, 1987 in Chesapeake Bay, Maryland and in August, 1988 in Sequim Bay, Washington, For glass coverslips the films were air-dried, mounted on SEM pegs, ringed with colloidal silver, and sputter coated with Au-Pd, The Langmuir-Blogett film technique maintained the structure of the microlayer intact for examination, SEM observation and EDS analysis were then used to determine organisms and relative concentrations of heavy metals, using a Link AN 10000 EDS system with an ISI SS40 SEM unit. Typical heavy microlayer films are shown in Figure 3.


1993 ◽  
Vol 88 (3) ◽  
pp. 522-529 ◽  
Author(s):  
Udo W. Stephan ◽  
Gunter Scholz
Keyword(s):  

2011 ◽  
Author(s):  
Parker Woody ◽  
Michael Zhang ◽  
Craig Pulsipher ◽  
Dawson Hedges ◽  
Bruce Brown

Sign in / Sign up

Export Citation Format

Share Document