cd accumulation
Recently Published Documents


TOTAL DOCUMENTS

436
(FIVE YEARS 214)

H-INDEX

36
(FIVE YEARS 9)

2022 ◽  
Vol 424 ◽  
pp. 127361
Author(s):  
Xiangqin Wang ◽  
Yanhong Du ◽  
Fangbai Li ◽  
Liping Fang ◽  
Tingting Pang ◽  
...  

2022 ◽  
Author(s):  
Flávio Henrique Silveira Rabêlo ◽  
Felipe dos Santos ◽  
José Lavres ◽  
Luís Alleoni

Abstract Although several grasses have been evaluated for cadmium (Cd) phytoextraction, there are no studies assessing how Cd is accumulated and distributed in the tissues of Panicum maximum grown in mildly polluted soils. The evaluation of tillering, nutritional status and biomass yield of this grass, mainly along successive shoot regrowths, is not well studied so far. Thus, P. maximum Jacq. cv. Massai was grown for two periods in an Oxisol presenting bioavailable Cd concentrations varying from 0.04 (control) to 10.91 mg kg−1 soil. Biomass yield of leaves and stems´ growth have decreased under the highest Cd exposure, but it did not occur in the regrowth period, indicating that Cd-induced toxicity is stronger in the early stages of development of P. maximum. The tillering was not compromised even the basal node presenting Cd concentrations higher than 100 mg kg−1 DW. We identified a restriction on Cd transport upwards from basal node, which was the main local of Cd accumulation. Apparently, P, K, Mg, S and Cu are involved in processes that restrict Cd translocation and confer high tolerance to Cd in P. maximum. The Cd-induced nutritional disorders did not negatively correlate with factors used to calculate phytoextraction efficiency. However, the nutritional adjustments of P. maximum to cope with Cd stress restricted the upward Cd transport, which decreased the phytoextraction efficiency from the available Cd concentration of 5.93 mg kg−1 soil.


2022 ◽  
Author(s):  
Victor Chaplygin ◽  
Tatiana Minkina ◽  
Saglara Mandzhieva ◽  
Dina Nevidomskaya ◽  
Natalia Chernikova ◽  
...  

Over the pastdecade, particular attention has been paid to studies of the chemical composition of medical plants to identify the possible negative consequences of using raw plant material polluted with heavy metals for the production of medical drugs. In our study, we analyzed the chemical composition of the medical plants growing in the impact area of the Novocherkassk power station. Specifically, the plants Artemisia austriaca, Poa pratensis and Elytrigia repenswere examined for the analysis.The content and distribution of Zn and Cd, which are most distributed in industrial emissions and belong to the first class of hazardous elements, were measured. The maximum permissible content (MPC) of Zn in the raw material of Artemisia austriaca and Elytrigia repens was found, as was the maximum content of Cd in all analyzed plants growing in the 5km area around thepower station. The plant Artemisia austriacawasfound to have Zn and Cd accumulation in itsabovegroundcomponents, while in Poa pratensis and Elytrigia repens, accumulation was in the roots. The morphobiometric parameters of the plants were mostly dependent on the soil properties, followed by the degree of technogenic load. The content of Zn and Cd in the medical drugs was higher than the MPC without visible features of heavy metal pollution and so these plants weredangerous for human health. Keywords: heavy metals, technogenic load, phytoreagents, morphometric parameters


2022 ◽  
Author(s):  
Xinhao Ren ◽  
Jiayi He ◽  
Qiao Chen ◽  
Fei He ◽  
Ting Wei ◽  
...  

Abstract To investigate the change in biochar’s ability to directly immobilize Cd in soil ,a successive wheat cultivation with experiment was conducted. Three biochar with different Cd adsorption mechanisms were added into soils and a mesh bag was used to separate the soil particles (> 1 μm) from biochar. The results showed that the ash contents and anionic contents (CO 3 2- and PO 4 3- ) of the biochar decreased with the cultivation time, while the oxygen-containing functional groups content and CEC of the biochar increased. Resultly, the Cd concentration on biochar decreased, highly decreased by 68.9% for WBC300, while unstable Cd species (acid soluble and reducible fraction of Cd) on biochar increased with successive cultivation, increasing from 3% to 17% for WBC300 in FS. Correspondingly, the ability of biochar to inhibit Cd accumulation in wheat decreased. The results of this study illustrated that the ability of biochar to directly immobilize Cd in soil is not permanent, it gradually decreases with aging in soil. The adsorption mechanism of Cd on biochar changed from precipitation to complexation and ion exchange processes could be the main reason.


Toxics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 18
Author(s):  
Rebecca von Hellfeld ◽  
María Zarzuelo ◽  
Beñat Zaldibar ◽  
Miren P. Cajaraville ◽  
Amaia Orbea

Filter feeders are target species for microplastic (MP) pollution, as particles can accumulate in the digestive system, disturbing feeding processes and becoming internalized in tissues. MPs may also carry pathogens or pollutants present in the environment. This work assessed the influence of polystyrene (PS) MP size and concentration on accumulation and depuration time and the role of MPs as vectors for metallic (Cd) and organic (benzo(a)pyrene, BaP) pollutants. One-day exposure to pristine MPs induced a concentration-dependent accumulation in the digestive gland (in the stomach and duct lumen), and after 3-day depuration, 45 µm MPs appeared between gill filaments, while 4.5 µm MPs also occurred within gill filaments. After 3-day exposure to contaminated 4.5 µm MPs, mussels showed increased BaP levels whilst Cd accumulation did not occur. Here, PS showed higher affinity to BaP than to Cd. Three-day exposure to pristine or contaminated MPs did not provoke significant alterations in antioxidant and peroxisomal enzyme activities in the gills and digestive gland nor in lysosomal membrane stability. Exposure to dissolved contaminants and to MP-BaP caused histological alterations in the digestive gland. In conclusion, these short-term studies suggest that MPs are ingested and internalized in a size-dependent manner and act as carriers of the persistent organic pollutant BaP.


2022 ◽  
pp. 128226
Author(s):  
Jialian Wei ◽  
Sisi Liao ◽  
Muzi Li ◽  
Bin Zhu ◽  
Hongcheng Wang ◽  
...  

2022 ◽  
Vol 111 ◽  
pp. 141-152
Author(s):  
Wenjun Yang ◽  
Shilong Wang ◽  
Hang Zhou ◽  
Min Zeng ◽  
Jingyi Zhang ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
pp. 429
Author(s):  
Rongrong Ying ◽  
Bing Xia ◽  
Xiaowen Zeng ◽  
Rongliang Qiu ◽  
Yetao Tang ◽  
...  

Heavy metal pollution in farmland threatens human life. It is not clear whether crops can adsorb heavy metals. In this study, the cadmium accumulation and tolerance in Chinese cabbage Brassica pekinensis (cv. Xiaoza-56) and the known Cd-accumulator Brassica juncea in hydroponics and pot experiment were investigated. Furthermore, we evaluated their potential on the phytoextraction of Cd-contaminated soil. The hydroponics with 1–50 μM Cd concentrations showed that both B. juncea and B. pekinensis had high Cd accumulation and tolerance with translocation factor closed to 1 at Cd levels < 25 μM. The pot study conducted with 5 to 100 mg Cd kg−1 soil indicated that B. juncea showed less tolerance and accumulation to Cd than B. pekinensis, especially at higher Cd levels. The bioconcentration factor was much higher than 1 in both B. juncea and B. pekinensis grown in <40 mg Cd kg−1 soil without showing biomass reduction. In the model evaluation, the ability of B. juncea and B. pekinensis to reduce the initial soil Cd concentration of 20 and 5 mg kg−1 to specific targets with a lower or higher biomass of 4 or 20 t ha−1, respectively. The above results indicate that B. juncea and B. pekinensis (cv. Xiaoza-56), which the latter is a better candidate for Cd phytoextraction in moderated Cd-contaminated soil. The results provide a reference for Cd pollution control.


2021 ◽  
Vol 8 (1) ◽  
pp. 10
Author(s):  
Dyaaaldin Abdalmegeed ◽  
Gan Zhao ◽  
Pengfei Cheng ◽  
Javaid A. Bhat ◽  
Wajid Ali Khattak ◽  
...  

Whether or not hydrogen gas (H2) can reduce cadmium (Cd) toxicity in Ganoderma lucidum has remained largely unknown. Here, we report that Cd-induced growth inhibition in G. lucidum was significantly alleviated by H2 fumigation or hydrogen-rich water (HRW), evaluated by lower oxidative damage and Cd accumulation. Moreover, the amelioration effects of H2 fumigation were better than of HRW in an optimum concentration of H2 under our experimental conditions. Further results showed that H2-alleviated growth inhibition in G. lucidum was accompanied by increased nitric oxide (NO) level and nitrate reductase (NR) activity under Cd stress. On the other hand, the mitigation effects were reversed after removing endogenous NO with its scavenger cPTIO or inhibiting H2-induced NR activity with sodium tungstate. The role of NO in H2-alleviated growth inhibition under Cd stress was proved to be achieved through a restoration of redox balance, an increase in cysteine and proline contents, and a reduction in Cd accumulation. In summary, these results clearly revealed that NR-dependent NO might be involved in the H2-alleviated Cd toxicity in G. lucidum through rebuilding redox homeostasis, increasing cysteine and proline levels, and reducing Cd accumulation. These findings may open a new window for H2 application in Cd-stressed economically important fungi.


Sign in / Sign up

Export Citation Format

Share Document