scholarly journals An algorithm for solving initial value problems of third order ordinary differential equations

2010 ◽  
Vol 8 (2) ◽  
Author(s):  
M.O Udo ◽  
D.O Awoyemi
Author(s):  
J. O. Kuboye ◽  
O. F. Quadri ◽  
O. R. Elusakin

In this work, numerical methods for solving third order initial value problems of ordinary differential equations are developed. Multi-step collocation is used in deriving the methods, where power series approximate solution is employed as a basis function. Gaussian elimination approach is considered in finding the unknown variables $a_j, j=0(1)8$ in interpolation and collocation equations, which are substituted into the power series to give the continuous implicit schemes. The discrete schemes and its derivatives are derived by evaluating the grid and non-grid points. These schemes are arranged in a matrix form to produce block methods. The order of the developed methods are found to be six. The numerical results proved the efficiency of the methods over the existing methods.


Author(s):  
J. Sabo ◽  
T. Y. Kyagya ◽  
M. Solomon

In this research, we have proposed the simulation of linear block algorithm for modeling third order highly stiff problem without reduction to a system of first order ordinary differential equation, to address the weaknesses in reduction method. The method is derived using the linear block method through interpolation and collocation. The basic properties of the block method were recovered and was found to be consistent, convergent and zero-stability. The new block method is been applied to model third order initial value problems of ordinary differential equations without reducing the equations to their equivalent systems of first order ordinary differential equations. The result obtained on the process on some sampled modeled third order linear problems give better approximation than the existing methods which we compared our result with.


2016 ◽  
Vol 9 (4) ◽  
pp. 619-639 ◽  
Author(s):  
Zhong-Qing Wang ◽  
Jun Mu

AbstractWe introduce a multiple interval Chebyshev-Gauss-Lobatto spectral collocation method for the initial value problems of the nonlinear ordinary differential equations (ODES). This method is easy to implement and possesses the high order accuracy. In addition, it is very stable and suitable for long time calculations. We also obtain thehp-version bound on the numerical error of the multiple interval collocation method underH1-norm. Numerical experiments confirm the theoretical expectations.


Sign in / Sign up

Export Citation Format

Share Document