scholarly journals Depositional facies analysis using core samples from greater Ughelli Depobelt, Niger Delta Basin Nigeria

2019 ◽  
Vol 23 (6) ◽  
pp. 1137
Author(s):  
G.E. Maju-Oyovwikowhe ◽  
F.A. Lucas
Author(s):  
Babatunde Salawu ◽  
Reza Sanaee ◽  
Olumayowa Onabanjo

ABSTRACT The purpose of this paper is to study the strength of rocks by determining their Unconfined Compressive Strength (UCS), correlate the determined strength to physical properties of rocks that can be measured from formation evaluation data and derive an equation that can be used to derive rock strength from formation evaluation measurements. The scope of this work is limited to the Niger delta basin from which core samples were taken. The method used for this research was to collect data of existing core samples at different depths and in various fields in the Niger Delta, then determine the strength of each sample by unconfined compressive tests. The derived strength was then analyzed with corresponding formation evaluation data utilizing regression analysis. Then, comparisons were drawn between the correlations derived and other existing correlations in the industry to check whether any of the existing correlations fits the Niger Delta region. The result is a model that takes formation evaluation data (Slowness, Young's Modulus and Poisson's ratio) as input in order to provide rock compressive strength for the Niger-Delta region. It was also observed that correlations built for other regions of the world do not yield accurate results when used for the Niger Delta region due to factors such as formation characteristics type of regression method, various sample collection conditions and so on.


2021 ◽  
Vol 13 (2) ◽  
pp. 601-610
Author(s):  
K. Itiowe ◽  
R. Oghonyon ◽  
B. K. Kurah

The sediment of #3 Well of the Greater Ughelli Depobelt are represented by sand and shale intercalation. In this study, lithofacies analysis and X-ray diffraction technique were used to characterize the sediments from the well. The lithofacies analysis was based on the physical properties of the sediments encountered from the ditch cuttings.  Five lithofacies types of mainly sandstone, clayey sandstone, shaly sandstone, sandy shale and shale and 53 lithofacies zones were identified from 15 ft to 11295 ft. The result of the X-ray diffraction analysis identified that the following clay minerals – kaolinite, illite/muscovite, sepiolite, chlorite, calcite, dolomite; with kaolinite in greater percentage. The non-clay minerals include quartz, pyrite, anatase, gypsum, plagioclase, microcline, jarosite, barite and fluorite; with quartz having the highest percentage. Therefore, due to the high percentage of kaolinite in #3 well, the pore filing kaolinite may have more effect on the reservoir quality than illite/muscovite, chlorite and sepiolite. By considering the physical properties, homogenous and heterogeneous nature of the #3 Well, it would be concluded that #3 Well has some prospect for petroleum and gas exploration.


2021 ◽  
Author(s):  
Tinuola Udoh

Abstract In this paper, the enhanced oil recovery potential of the application of nanoparticles in Niger Delta water-wet reservoir rock was investigated. Core flooding experiments were conducted on the sandstone core samples at 25 °C with the applications of nanoparticles in secondary and tertiary injection modes. The oil production during flooding was used to evaluate the enhanced oil recovery potential of the nanoparticles in the reservoir rock. The results of the study showed that the application of nanoparticles in tertiary mode after the secondary formation brine flooding increased oil production by 16.19% OIIP. Also, a comparison between the oil recoveries from secondary formation brine and nanoparticles flooding showed that higher oil recovery of 81% OIIP was made with secondary nanoparticles flooding against 57% OIIP made with formation brine flooding. Finally, better oil recovery of 7.67% OIIP was achieved with secondary application of nanoparticles relative to the tertiary application of formation brine and nanoparticles flooding. The results of this study are significant for the design of the application of nanoparticles in Niger Delta reservoirs.


Author(s):  
Joseph Nanaoweikule Eradiri ◽  
Ehimare Erhire Odafen ◽  
Ikenna Christopher Okwara ◽  
Ayonma Wilfred Mode ◽  
Okwudiri Aloysius Anyiam ◽  
...  

2017 ◽  
Vol 5 (1) ◽  
pp. 19
Author(s):  
Ubong Essien ◽  
Akaninyene Akankpo ◽  
Okechukwu Agbasi

Petrophysical analysis was performed in two wells in the Niger Delta Region, Nigeria. This study is aimed at making available petrophysical data, basically water saturation calculation using cementation values of 2.0 for the reservoir formations of two wells in the Niger delta basin. A suite of geophysical open hole logs namely Gamma ray; Resistivity, Sonic, Caliper and Density were used to determine petrophysical parameters. The parameters determined are; volume of shale, porosity, water saturation, irreducible water saturation and bulk volume of water. The thickness of the reservoir varies between 127ft and 1620ft. Average porosity values vary between 0.061 and 0.600; generally decreasing with depth. The mean average computed values for the Petrophysical parameters for the reservoirs are: Bulk Volume of Water, 0.070 to 0.175; Apparent Water Resistivity, 0.239 to 7.969; Water Saturation, 0.229 to 0.749; Irreducible Water Saturation, 0.229 to 0.882 and Volume of Shale, 0.045 to 0.355. The findings will also enhance the proper characterization of the reservoir sands.


Sign in / Sign up

Export Citation Format

Share Document