scholarly journals A review of game theory approach to cyber security risk management

2018 ◽  
Vol 36 (4) ◽  
pp. 1271 ◽  
Author(s):  
D.A. Akinwumi ◽  
G.B. Iwasokun ◽  
B.K. Alese ◽  
S.A. Oluwadare
2018 ◽  
pp. 1299-1317
Author(s):  
Neila Rjaibi ◽  
Latifa Ben Arfa Rabai

This chapter presents the security concepts terminologies (threat, risk, security risk management, security risk management process, security threat model) and present the state of the art of security risk management models, compare and discuss strengths and weaknesses of such models. Then it presents the Mean Failure Cost (MFC) model for quantifying security threats as a rigorous measure of cyber security, and as a cascade of linear models in order to estimate the system security using the loss of a given stakeholders as a result of security breakdown. Finally it presents an overview of the applicability of the MFC measure to e-systems. In the conclusion, the chapter criticizes the MFC Cyber Security Measure and presents an overview of different perspectives.


ITNOW ◽  
2015 ◽  
Vol 57 (4) ◽  
pp. 26-27 ◽  
Author(s):  
S. Marvell

2019 ◽  
Author(s):  
Alireza Zarreh ◽  
HungDa Wan ◽  
Yooneun Lee ◽  
Can Saygin ◽  
Rafid Al Janahi

This paper presents a novel approach using game theory to assess the risk likelihood in manufacturing systems quantifiably. Cybersecurity is a pressing issue in the manufacturing sector. Nevertheless, managing the risk in cybersecurity has become a critical challenge for modern manufacturing enterprises. In risk management thinking, the first step is to identify the risk, then validate it, and lastly, consider responses to the risk. If the risk is below the security risk appetite of the manufacturing system, it could be accepted. However, if it is above the risk appetite, the system should appropriately respond by either avoiding, transferring, or mitigating the risk. The validation of the risk in terms of severity and likelihood of the threat, however, is challenging because the later component is hard to quantify. In this paper, Failure Modes and Effects Analysis (FMEA) method is modified by employing game theory to quantitatively assess the likelihood of cyber-physical security risks. This method utilizes the game theory approach by modeling the rivalry between the attacker and the system as a game and then try to analyze it to find the likelihood of the attacker’s action. We first define players of the game, action sets, and the utility function. Major concerns of cyber security issues in the manufacturing area are carefully considered in defining the cost function composed of defense policy, loss in production, and recovery. A linear optimization model is utilized to find a mixed-strategy Nash Equilibrium, which is the probability of choosing any action by the attacker also known as the likelihood of an attack. Numerical experiments are presented to further illustrate the method. Forecasting the attacker’s behavior enables us to assess the cybersecurity risk in a manufacturing system and thereby be more prepared with plans of proper responses.


2018 ◽  
pp. 452-470
Author(s):  
Neila Rjaibi ◽  
Latifa Ben Arfa Rabai

This chapter presents the security concepts terminologies (threat, risk, security risk management, security risk management process, security threat model) and present the state of the art of security risk management models, compare and discuss strengths and weaknesses of such models. Then it presents the Mean Failure Cost (MFC) model for quantifying security threats as a rigorous measure of cyber security, and as a cascade of linear models in order to estimate the system security using the loss of a given stakeholders as a result of security breakdown. Finally it presents an overview of the applicability of the MFC measure to e-systems. In the conclusion, the chapter criticizes the MFC Cyber Security Measure and presents an overview of different perspectives.


Author(s):  
Neila Rjaibi ◽  
Latifa Ben Arfa Rabai ◽  
Ali Mili

This chapter presents an overview of security challenges in e-Learning systems, and discusses a recent review related research on security risk management approaches in e-Learning to give a proper context to our work. The literature review proves a lack in quantitative security risk management models applied to e-learning system and presents the strengths of the Mean Failure Cost model in quantifying security threats with a financial risk measure. Moreover, we focus on presenting security aspects of e-Learning applications, and analyze its respective stakeholders, security requirements, architectural components and threats. The Mean Failure Cost (MFC) cyber security measure suitable for e-Learning systems is defined and computed. We adapt it to quantify security threats and risk within e-learning systems. It is based on the identification of system's architecture, the well-defined classes of stakeholders, the list of possible threats and vulnerabilities and the specific security requirements related to e-Learning systems and applications.


Author(s):  
Neila Rjaibi ◽  
Latifa Ben Arfa Rabai

This chapter presents the security concepts terminologies (threat, risk, security risk management, security risk management process, security threat model) and present the state of the art of security risk management models, compare and discuss strengths and weaknesses of such models. Then it presents the Mean Failure Cost (MFC) model for quantifying security threats as a rigorous measure of cyber security, and as a cascade of linear models in order to estimate the system security using the loss of a given stakeholders as a result of security breakdown. Finally it presents an overview of the applicability of the MFC measure to e-systems. In the conclusion, the chapter criticizes the MFC Cyber Security Measure and presents an overview of different perspectives.


Sign in / Sign up

Export Citation Format

Share Document