scholarly journals Analysis and Performance Evaluation of Entropic Thresholding Image Processing Techniques for Electrical Capacitance Tomography Measurement System

2021 ◽  
Vol 47 (3) ◽  
pp. 928-942
Author(s):  
Josiah Nombo ◽  
Alfred Mwambela ◽  
Michael Kisngiri

To improve image quality generated from the electrical capacitance tomography measurement system, the use of entropic thresholding techniques is investigated in this article. Based on the analysis of the principle of Electrical Capacitance Tomography (ECT) image reconstruction and entropic thresholding, various algorithms have been proposed for easy extraction of quantitative information from tomograms generated from the ECT system. Experiments indicate that proposed algorithms can provide high-quality images at no or minimum computational cost. It is easier to implement and integrate with classical algorithms such as Linear Back Projection, Singular value decomposition, Tikhonov regularization, and Landweber. Entropic thresholding techniques present a feasible and effective way toward the industrial utilization of ECT measurement systems. Keywords: Electrical Capacitance Tomography; Inverse Problem; Image Reconstruction; Entropic Thresholding

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3701 ◽  
Author(s):  
Jin Zheng ◽  
Jinku Li ◽  
Yi Li ◽  
Lihui Peng

Electrical Capacitance Tomography (ECT) image reconstruction has developed for decades and made great achievements, but there is still a need to find a new theoretical framework to make it better and faster. In recent years, machine learning theory has been introduced in the ECT area to solve the image reconstruction problem. However, there is still no public benchmark dataset in the ECT field for the training and testing of machine learning-based image reconstruction algorithms. On the other hand, a public benchmark dataset can provide a standard framework to evaluate and compare the results of different image reconstruction methods. In this paper, a benchmark dataset for ECT image reconstruction is presented. Like the great contribution of ImageNet that transformed machine learning research, this benchmark dataset is hoped to be helpful for society to investigate new image reconstruction algorithms since the relationship between permittivity distribution and capacitance can be better mapped. In addition, different machine learning-based image reconstruction algorithms can be trained and tested by the unified dataset, and the results can be evaluated and compared under the same standard, thus, making the ECT image reconstruction study more open and causing a breakthrough.


Sign in / Sign up

Export Citation Format

Share Document