scholarly journals $Y$ -meshes and generalized pentagram maps

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Max Glick ◽  
Pavlo Pylyavskyy

International audience We introduce a rich family of generalizations of the pentagram map sharing the property that each generates an infinite configuration of points and lines with four points on each line. These systems all have a description as $Y$ -mutations in a cluster algebra and hence establish new connections between cluster theory and projective geometry. Nous introduisons une famille de généralisations de l’application pentagramme. Chacune produit une configuration infinie de points et de lignes avec quatre points sur chaque ligne. Ces systèmes ont une description des $Y$ -mutations dans une algèbre amassée, un nouveau lien entre la théorie d’algèbres amassées et la géométrie projective.

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Emily Barnard ◽  
Emily Meehan ◽  
Shira Polster ◽  
Nathan Reading

International audience We construct universal geometric coefficients for the cluster algebra associated to the four-punctured sphere and obtain, as a by-product, the $g$ -vectors of cluster variables. We also construct the rational part of the mutation fan. These constructions rely on a classification of the allowable curves (the curves which can appear in quasi-laminations). The classification allows us to prove the Null Tangle Property for the four-punctured sphere, thus adding this surface to a short list of surfaces for which this property is known. The Null Tangle Property then implies that the shear coordinates of allowable curves are the universal coefficients. We compute these shear coordinates to obtain universal geometric coefficients. Nous construisons des coefficients géométriques universels pour l’algèbre amassée associée à la sphère privée de 4 points, et obtenons ce faisant les $g$-vecteurs des variables d’amas. Nous construisons aussi la partie rationnelle de l’éventail de mutation. Ces constructions reposent sur la classification des courbes admissibles (les courbes qui peuvent apparaître dans les quasi-laminations). Cette classification nous permet de prouver la “Null Tangle Property” pour la sphère privée de 4 points, ajoutant ainsi cette surface à la courte liste de surfaces pour lesquelles cette propriété est connue. La “Null Tangle Property” implique alors que les coordonnées de décalage des courbes admissibles sont les coefficients universels. Nous calculons ces coordonnées de décalage pour obtenir les coefficients géométriques universels.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Brendon Rhoades

International audience The polynomial ring $\mathbb{Z}[x_{11}, . . . , x_{33}]$ has a basis called the dual canonical basis whose quantization facilitates the study of representations of the quantum group $U_q(\mathfrak{sl}3(\mathbb{C}))$. On the other hand, $\mathbb{Z}[x_{11}, . . . , x_{33}]$ inherits a basis from the cluster monomial basis of a geometric model of the type $D_4$ cluster algebra. We prove that these two bases are equal. This extends work of Skandera and proves a conjecture of Fomin and Zelevinsky. This also provides an explicit factorization of the dual canonical basis elements of $\mathbb{Z}[x_{11}, . . . , x_{33}]$ into irreducible polynomials. L'anneau de polynômes $\mathbb{Z}[x_{11}, . . . , x_{33}]$ a une base appelée base duale canonique, et dont une quantification facilite l'étude des représentations du groupe quantique $U_q(\mathfrak{sl}3(\mathbb{C}))$. D'autre part, $\mathbb{Z}[x_{11}, . . . , x_{33}]$ admet une base issue de la base des monômes d'amas de l'algèbre amassée géométrique de type $D_4$. Nous montrons que ces deux bases sont égales. Ceci prolonge les travaux de Skandera et démontre une conjecture de Fomin et Zelevinsky. Ceci fournit également une factorisation explicite en polynômes irréductibles des éléments de la base duale canonique de $\mathbb{Z}[x_{11}, . . . , x_{33}]$ .


2010 ◽  
Vol Vol. 12 no. 5 (Combinatorics) ◽  
Author(s):  
Brendon Rhoades

Combinatorics International audience The polynomial ring Z[x(11), ..., x(33)] has a basis called the dual canonical basis whose quantization facilitates the study of representations of the quantum group U-q(sl(3) (C)). On the other hand, Z[x(1 1), ... , x(33)] inherits a basis from the cluster monomial basis of a geometric model of the type D-4 cluster algebra. We prove that these two bases are equal. This extends work of Skandera and proves a conjecture of Fomin and Zelevinsky.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Miriam Farber ◽  
Alexander Postnikov

International audience We discuss arrangements of equal minors in totally positive matrices. More precisely, we would like to investigate the structure of possible equalities and inequalities between the minors. We show that arrangements of equals minors of largest value are in bijection with <i>sorted sets</i>, which earlier appeared in the context of <i>alcoved polytopes</i> and Gröbner bases. Maximal arrangements of this form correspond to simplices of the alcoved triangulation of the hypersimplex; and the number of such arrangements equals the <i>Eulerian number</i>. On the other hand, we conjecture and prove in many cases that arrangements of equal minors of smallest value are exactly the <i>weakly separated sets</i>. Weakly separated sets, originally introduced by Leclerc and Zelevinsky, are closely related to the \textitpositive Grassmannian and the associated <i>cluster algebra</i>.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Aslak Bakke Buan ◽  
Idun Reiten ◽  
Hugh Thomas

International audience Let $W$ be a finite crystallographic reflection group, with root system $\Phi$. Associated to $W$ there is a positive integer, the generalized Catalan number, which counts the clusters in the associated cluster algebra, the noncrossing partitions for $W$, and several other interesting sets. Bijections have been found between the clusters and the noncrossing partitions by Reading and Athanasiadis et al. There is a further generalization of the generalized Catalan number, sometimes called the Fuss-Catalan number for $W$, which we will denote $C_m(W)$. Here $m$ is a positive integer, and $C_1(W)$ is the usual generalized Catalan number. $C_m(W)$ counts the $m$-noncrossing partitions for $W$ and the $m$-clusters for $\Phi$. In this abstract, we will give an explicit description of a bijection between these two sets. The proof depends on a representation-theoretic reinterpretation of the problem, in terms of exceptional sequences of representations of quivers. Soit $W$ un groupe de réflexions fini et cristallographique, avec système de racines $\Phi$. Associé à $W$, il y a un entier positif, le nombre de Catalan généralisé, qui compte les amas dans l'algèbre amassée associée, les partitions non-croisées de $W$, et plusieurs autres ensembles intéressantes. Des bijections entre les amas et les partitions non-croisées ont été données par Reading et Athanasiadis et al. On peut encore généraliser le nombre de Catalan généralisé, obtenant le nombre Fuss-Catalan de $W$, que nous noterons $C_m(W)$. Ici $m$ est un entier positif, et $C_1(W)$ est le nombre Catalan généralisé standard. $C_m(W)$ compte les partitions $m$-non-croisées de $W$ et les $m$-amas de $\Phi$. Dans ce résumé, nous donnerons une bijection explicite entre ces deux ensembles. La démonstration dépend d'une réinterprétation des objets du point de vue des suites exceptionnelles de représentations de carquois.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Max Glick

International audience The pentagram map, introduced by R. Schwartz, is a birational map on the configuration space of polygons in the projective plane. We study the singularities of the iterates of the pentagram map. We show that a ``typical'' singularity disappears after a finite number of iterations, a confinement phenomenon first discovered by Schwartz. We provide a method to bypass such a singular patch by directly constructing the first subsequent iterate that is well-defined on the singular locus under consideration. The key ingredient of this construction is the notion of a decorated (twisted) polygon, and the extension of the pentagram map to the corresponding decorated configuration space. L'application pentagramme de R. Schwartz est une application birationnelle sur l'espace des polygones dans le plan projectif. Nous ètudions les singularitès des itèrations de l'application pentagramme. Nous montrons qu'une singularitè ``typique'' disparaî t après un nombre fini d'itèrations, un phènomène dècouvert par Schwartz. Nous fournissons une mèthode pour contourner une telle singularitè en construisant la première itèration qui est bien dèfinie. L'ingrèdient principal de cette construction est la notion d'un polygone dècorè et l'extension de l'application pentagramme á l'espace de configuration dècorè.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Emily Gunawan ◽  
Gregg Musiker

International audience We extend a $T$-path expansion formula for arcs on an unpunctured surface to the case of arcs on a once-punctured polygon and use this formula to give a combinatorial proof that cluster monomials form the atomic basis of a cluster algebra of type $D$. Nous généralisons une formule de développement en $T$-chemins pour les arcs sur une surface non-perforée aux arcs sur un polygone à une perforation. Nous utilisons cette formule pour donner une preuve combinatoire du fait que les monômes amassées constituent la base atomique d’une algèbre amassée de type $D$.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Mark Skandera

International audience We show that the set of cluster monomials for the cluster algebra of type $D_4$ contains a basis of the $\mathbb{Z}$-module $\mathbb{Z}[x_{1,1},\ldots ,x_{3,3}]$. We also show that the transition matrices relating this cluster basis to the natural and the dual canonical bases are unitriangular and nonnegative. These results support a conjecture of Fomin and Zelevinsky on the equality of the cluster and dual canonical bases. In the event that this conjectured equality is true, our results also imply an explicit factorization of each dual canonical basis element as a product of cluster variables. Nous montrons que l'ensemble des monômes de l'algebre "cluster'' $D_4$ contient une base-$\mathbb{Z}$ pour le module $\mathbb{Z}[x_{1,1},\ldots ,x_{3,3}]$. Nous montrons aussi que les matrices transitoires qui relient cette base à la base canonique duale sont unitriangulaires. Ces résultats renforcent une conjecture de Fomin et de Zelevinsky sur l'égalité de ces deux bases. Si cette égalité s'avérait être vraie, notre résultat donnerait aussi une factorisation des éléments de la base canonique duale.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Max Glick

International audience The pentagram map, introduced by R. Schwartz, is defined by the following construction: given a polygon as input, draw all of its ``shortest'' diagonals, and output the smaller polygon which they cut out. We employ the machinery of cluster algebras to obtain explicit formulas for the iterates of the pentagram map. L'application pentagramme de R. Schwartz est définie par la construction suivante: on trace les diagonales ``les plus courtes'' d'un polygone donné en entrée et on retourne en sortie le plus petit polygone que ces diagonales découpent. Nous employons la machinerie des algèbres ``clusters'' pour obtenir des formules explicites pour les itérations de l'application pentagramme.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Anne-Sophie Gleitz

International audience Shapiro and Chekhov (2011) have introduced the notion of <i>generalised cluster algebra</i>; we focus on an example in type $C_n$. On the other hand, Chari and Pressley (1997), as well as Frenkel and Mukhin (2002), have studied the <i>restricted integral form</i> $U^{\mathtt{res}}_ε (\widehat{\mathfrak{g}})$ of a quantum affine algebra $U_q(\widehat{\mathfrak{g}})$ where $q=ε$ is a root of unity. Our main result states that the Grothendieck ring of a tensor subcategory $C_{ε^\mathbb{z}}$ of representations of $U^{\mathtt{res}}_ε (L\mathfrak{sl}_2)$ is a generalised cluster algebra of type $C_{l−1}$, where $l$ is the order of $ε^2$. We also state a conjecture for $U^{\mathtt{res}}_ε (L\mathfrak{sl}_3)$, and sketch a proof for $l=2$. Shapiro et Chekhov (2011) ont introduit la notion d'<i>algèbre amassée généralisée</i>; nous étudions un exemple en type $C_n$. Par ailleurs, Chari et Pressley (1997), ainsi que Frenkel et Mukhin (2002), ont étudié la <i>forme entière restreinte</i> $U^{\mathtt{res}}_ε (\widehat{\mathfrak{g}})$ d'une algèbre affine quantique $U_q(\widehat{\mathfrak{g}})$ où $q=ε$ est une racine de l'unité. Notre résultat principal affirme que l'anneau de Grothendieck d'une sous-catégorie tensorielle $C_{ε^\mathbb{z}}$ de représentations de $U^{\mathtt{res}}_ε (L\mathfrak{sl}_2)$ est une algèbre amassée généralisée de type $C_{l−1}$, où $l$ est l'ordre de $ε^2$. Nous conjecturons une propriété similaire pour $U^{\mathtt{res}}_ε (L\mathfrak{sl}_3)$ et donnons un aperçu de la preuve pour $l=2$.


Sign in / Sign up

Export Citation Format

Share Document