scholarly journals $m$-noncrossing partitions and $m$-clusters

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Aslak Bakke Buan ◽  
Idun Reiten ◽  
Hugh Thomas

International audience Let $W$ be a finite crystallographic reflection group, with root system $\Phi$. Associated to $W$ there is a positive integer, the generalized Catalan number, which counts the clusters in the associated cluster algebra, the noncrossing partitions for $W$, and several other interesting sets. Bijections have been found between the clusters and the noncrossing partitions by Reading and Athanasiadis et al. There is a further generalization of the generalized Catalan number, sometimes called the Fuss-Catalan number for $W$, which we will denote $C_m(W)$. Here $m$ is a positive integer, and $C_1(W)$ is the usual generalized Catalan number. $C_m(W)$ counts the $m$-noncrossing partitions for $W$ and the $m$-clusters for $\Phi$. In this abstract, we will give an explicit description of a bijection between these two sets. The proof depends on a representation-theoretic reinterpretation of the problem, in terms of exceptional sequences of representations of quivers. Soit $W$ un groupe de réflexions fini et cristallographique, avec système de racines $\Phi$. Associé à $W$, il y a un entier positif, le nombre de Catalan généralisé, qui compte les amas dans l'algèbre amassée associée, les partitions non-croisées de $W$, et plusieurs autres ensembles intéressantes. Des bijections entre les amas et les partitions non-croisées ont été données par Reading et Athanasiadis et al. On peut encore généraliser le nombre de Catalan généralisé, obtenant le nombre Fuss-Catalan de $W$, que nous noterons $C_m(W)$. Ici $m$ est un entier positif, et $C_1(W)$ est le nombre Catalan généralisé standard. $C_m(W)$ compte les partitions $m$-non-croisées de $W$ et les $m$-amas de $\Phi$. Dans ce résumé, nous donnerons une bijection explicite entre ces deux ensembles. La démonstration dépend d'une réinterprétation des objets du point de vue des suites exceptionnelles de représentations de carquois.

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Ricardo Mamede

International audience The total number of noncrossing partitions of type $\Psi$ is the $n$th Catalan number $\frac{1}{ n+1} \binom{2n}{n}$ when $\Psi =A_{n-1}$, and the binomial coefficient $\binom{2n}{n}$ when $\Psi =B_n$, and these numbers coincide with the correspondent number of nonnesting partitions. For type $A$, there are several bijective proofs of this equality; in particular, the intuitive map, which locally converts each crossing to a nesting, is one of them. In this paper we present a bijection between nonnesting and noncrossing partitions of types $A$ and $B$ that generalizes the type $A$ bijection that locally converts each crossing to a nesting. Le nombre total des partitions non-croisées du type $\Psi$ est le $n$-ème nombre de Catalan $\frac{1}{ n+1} \binom{2n}{n}$ si $\Psi =A_{n-1}$, et le coefficient binomial $\binom{2n}{n}$ si $\Psi =B_n$, et ces nombres son coïncidents avec le nombre correspondant des partitions non-emboîtées. Pour le type $A$, il y a plusieurs preuves bijectives de cette égalité; en particulier, la intuitive fonction, qui convertit localement chaque croisée en une emboîtée, c'est un d'entre eux. Dans ce papier nous présentons une bijection entre partitions non-croisées et non-emboîtées des types $A$ et $B$ qui généralise la bijection du type $A$ qui localement convertit chaque croisée en une emboîtée.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Alexander Garver ◽  
Jacob P. Matherne

International audience Exceptional sequences are certain ordered sequences of quiver representations. We use noncrossing edge-labeled trees in a disk with boundary vertices (expanding on T. Araya’s work) to classify exceptional sequences of representations of $Q$, the linearly ordered quiver with $n$ vertices. We also show how to use variations of this model to classify $c$-matrices of $Q$, to interpret exceptional sequences as linear extensions, and to give a simple bijection between exceptional sequences and certain chains in the lattice of noncrossing partitions. In the case of $c$-matrices, we also give an interpretation of $c$-matrix mutation in terms of our noncrossing trees with directed edges. Les suites exceptionnelles sont certaines suites ordonnées de représentations de carquois. Nous utilisons des arbres aux arêtes étiquetés et aux sommets dans le bord d’un disque (expansion sur le travail de T. Araya) pour classifier les suites exceptionnelles de représentations du carquois linéairement ordonné à $n$ sommets. Nous exploitons des variations de ce modèle pour classifier les $c$-matrices dudit carquois, pour interpréter les suites exceptionnelles comme des extensions linéaires, et pour donner une bijection élémentaire entre les suites exceptionnelles et certaines chaînes dans le réseau des partitions sans croisement. Dans le cas des $c$-matrices, nous donnons également une interprétation de la mutation des $c$-matrices en termes des arbres sans croisement aux arêtes orientés.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Henri Mühle

International audience In this article we prove that the poset of m-divisible noncrossing partitions is EL-shellable for every well-generated complex reflection group. This was an open problem for type G(d,d,n) and for the exceptional types, for which a proof is given case-by-case. Dans cet article nous prouvons que l'ensemble ordonnè des partitions non-croisées m-divisibles est EL-èpluchable (``EL-shellable'') pour tout groupe de réflexions complexe bien engendrè. Il s'agissait d'un problème ouvert pour le type G(d,d,n) et pour les types exceptionnels, pour lesquels nous donnons une preuve au cas par cas.


10.37236/6251 ◽  
2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Alexander Garver ◽  
Kiyoshi Igusa ◽  
Jacob P. Matherne ◽  
Jonah Ostroff

Exceptional sequences are certain sequences of quiver representations.  We introduce a class of objects called strand diagrams and use these to classify exceptional sequences of representations of a quiver whose underlying graph is a type $\mathbb{A}_n$ Dynkin diagram. We also use variations of these objects to classify $c$-matrices of such quivers, to interpret exceptional sequences as linear extensions of explicitly constructed posets, and to give a simple bijection between exceptional sequences and certain saturated chains in the lattice of noncrossing partitions. 


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Tamás Lengyel

International audience Let $n$ and $k$ be positive integers, $d(k)$ and $\nu_2(k)$ denote the number of ones in the binary representation of $k$ and the highest power of two dividing $k$, respectively. De Wannemacker recently proved for the Stirling numbers of the second kind that $\nu_2(S(2^n,k))=d(k)-1, 1\leq k \leq 2^n$. Here we prove that $\nu_2(S(c2^n,k))=d(k)-1, 1\leq k \leq 2^n$, for any positive integer $c$. We improve and extend this statement in some special cases. For the difference, we obtain lower bounds on $\nu_2(S(c2^{n+1}+u,k)-S(c2^n+u,k))$ for any nonnegative integer $u$, make a conjecture on the exact order and, for $u=0$, prove part of it when $k \leq 6$, or $k \geq 5$ and $d(k) \leq 2$. The proofs rely on congruential identities for power series and polynomials related to the Stirling numbers and Bell polynomials, and some divisibility properties.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Emily Barnard ◽  
Emily Meehan ◽  
Shira Polster ◽  
Nathan Reading

International audience We construct universal geometric coefficients for the cluster algebra associated to the four-punctured sphere and obtain, as a by-product, the $g$ -vectors of cluster variables. We also construct the rational part of the mutation fan. These constructions rely on a classification of the allowable curves (the curves which can appear in quasi-laminations). The classification allows us to prove the Null Tangle Property for the four-punctured sphere, thus adding this surface to a short list of surfaces for which this property is known. The Null Tangle Property then implies that the shear coordinates of allowable curves are the universal coefficients. We compute these shear coordinates to obtain universal geometric coefficients. Nous construisons des coefficients géométriques universels pour l’algèbre amassée associée à la sphère privée de 4 points, et obtenons ce faisant les $g$-vecteurs des variables d’amas. Nous construisons aussi la partie rationnelle de l’éventail de mutation. Ces constructions reposent sur la classification des courbes admissibles (les courbes qui peuvent apparaître dans les quasi-laminations). Cette classification nous permet de prouver la “Null Tangle Property” pour la sphère privée de 4 points, ajoutant ainsi cette surface à la courte liste de surfaces pour lesquelles cette propriété est connue. La “Null Tangle Property” implique alors que les coordonnées de décalage des courbes admissibles sont les coefficients universels. Nous calculons ces coordonnées de décalage pour obtenir les coefficients géométriques universels.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Lenny Tevlin

International audience This paper contains two results. First, I propose a $q$-generalization of a certain sequence of positive integers, related to Catalan numbers, introduced by Zeilberger, see Lassalle (2010). These $q$-integers are palindromic polynomials in $q$ with positive integer coefficients. The positivity depends on the positivity of a certain difference of products of $q$-binomial coefficients.To this end, I introduce a new inversion/major statistics on lattice walks. The difference in $q$-binomial coefficients is then seen as a generating function of weighted walks that remain in the upper half-plan. Cet document contient deux résultats. Tout d’abord, je vous propose un $q$-generalization d’une certaine séquence de nombres entiers positifs, liés à nombres de Catalan, introduites par Zeilberger (Lassalle, 2010). Ces $q$-integers sont des polynômes palindromiques à $q$ à coefficients entiers positifs. La positivité dépend de la positivité d’une certaine différence de produits de $q$-coefficients binomial.Pour ce faire, je vous présente une nouvelle inversion/major index sur les chemins du réseau. La différence de $q$-binomial coefficients est alors considérée comme une fonction de génération de trajets pondérés qui restent dans le demi-plan supérieur.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Max Glick ◽  
Pavlo Pylyavskyy

International audience We introduce a rich family of generalizations of the pentagram map sharing the property that each generates an infinite configuration of points and lines with four points on each line. These systems all have a description as $Y$ -mutations in a cluster algebra and hence establish new connections between cluster theory and projective geometry. Nous introduisons une famille de généralisations de l’application pentagramme. Chacune produit une configuration infinie de points et de lignes avec quatre points sur chaque ligne. Ces systèmes ont une description des $Y$ -mutations dans une algèbre amassée, un nouveau lien entre la théorie d’algèbres amassées et la géométrie projective.


2011 ◽  
Vol 271 (3-4) ◽  
pp. 1117-1139 ◽  
Author(s):  
Aslak Bakke Buan ◽  
Idun Reiten ◽  
Hugh Thomas

10.37236/4121 ◽  
2014 ◽  
Vol 21 (4) ◽  
Author(s):  
Marko Thiel
Keyword(s):  

The set of dominant regions of the $k$-Catalan arrangement of a crystallographic root system $\Phi$ is a well-studied object enumerated by the Fuß-Catalan number $Cat^{(k)}(\Phi)$. It is natural to refine this enumeration by considering floors and ceilings of dominant regions. A conjecture of Armstrong states that counting dominant regions by their number of floors of a certain height gives the same distribution as counting dominant regions by their number of ceilings of the same height. We prove this conjecture using a bijection that provides even more refined enumerative information.


Sign in / Sign up

Export Citation Format

Share Document