scholarly journals The Optimal Lower Bound for Generators of Invariant Rings without Finite SAGBI Bases with Respect to Any Admissible Order

1999 ◽  
Vol Vol. 3 no. 2 ◽  
Author(s):  
Manfred Göbel

International audience We prove the existence of an invariant ring \textbfC[X_1,...,X_n]^T generated by elements with a total degree of at most 2, which has no finite SAGBI basis with respect to any admissible order. Therefore, 2 is the optimal lower bound for the total degree of generators of invariant rings with such a property.


2001 ◽  
Vol DMTCS Proceedings vol. AA,... (Proceedings) ◽  
Author(s):  
Nicolas Thiéry

International audience We present a characteristic-free algorithm for computing minimal generating sets of invariant rings of permutation groups. We circumvent the main weaknesses of the usual approaches (using classical Gröbner basis inside the full polynomial ring, or pure linear algebra inside the invariant ring) by relying on the theory of SAGBI- Gröbner basis. This theory takes, in this special case, a strongly combinatorial flavor, which makes it particularly effective. Our algorithm does not require the computation of a Hironaka decomposition, nor even the computation of a system of parameters, and could be parallelized. Our implementation, as part of the library $permuvar$ for $mupad$, is in many cases much more efficient than the other existing software.



2012 ◽  
Vol DMTCS Proceedings vol. AQ,... (Proceedings) ◽  
Author(s):  
Zbigniew Gołębiewski ◽  
Filip Zagórski

International audience In the paper "How to select a looser'' Prodinger was analyzing an algorithm where $n$ participants are selecting a leader by flipping <underline>fair</underline> coins, where recursively, the 0-party (those who i.e. have tossed heads) continues until the leader is chosen. We give an answer to the question stated in the Prodinger's paper – what happens if not a 0-party is recursively looking for a leader but always a party with a smaller cardinality. We show the lower bound on the number of rounds of the greedy algorithm (for <underline>fair</underline> coin).





2016 ◽  
Vol 16 (3) ◽  
pp. 507-522 ◽  
Author(s):  
Yanhui Su ◽  
Lizhen Chen ◽  
Xianjuan Li ◽  
Chuanju Xu

AbstractThe Ladyženskaja–Babuška–Brezzi (LBB) condition is a necessary condition for the well-posedness of discrete saddle point problems stemming from discretizing the Stokes equations. In this paper, we prove the LBB condition and provide the (optimal) lower bound for this condition for the triangular spectral method proposed by L. Chen, J. Shen, and C. Xu in [3]. Then this lower bound is used to derive an error estimate for the pressure. Some numerical examples are provided to confirm the theoretical estimates.



1994 ◽  
Vol 52 (6) ◽  
pp. 339 ◽  
Author(s):  
A. Bertoni ◽  
Carlo Mereghetti ◽  
Giovanni Pighizzini


2017 ◽  
Vol 2019 (22) ◽  
pp. 6924-6932 ◽  
Author(s):  
Christoph Aistleitner ◽  
Kamalakshya Mahatab ◽  
Marc Munsch

Abstract We prove that there are arbitrarily large values of t such that $|\zeta (1+it)| \geq e^{\gamma } (\log _{2} t +\log _{3} t) + \mathcal{O}(1)$. This essentially matches the prediction for the optimal lower bound in a conjecture of Granville and Soundararajan. Our proof uses a new variant of the “long resonator” method. While earlier implementations of this method crucially relied on a “sparsification” technique to control the mean-square of the resonator function, in the present paper we exploit certain self-similarity properties of a specially designed resonator function.



COMBINATORICA ◽  
1992 ◽  
Vol 12 (4) ◽  
pp. 389-410 ◽  
Author(s):  
Jin-Yi Cai ◽  
Martin F�rer ◽  
Neil Immerman


1999 ◽  
Vol Vol. 3 no. 4 ◽  
Author(s):  
Hans L. Bodlaender

International audience In [DO95], Ding and Oporowski proved that for every k, and d, there exists a constant c_k,d, such that every graph with treewidth at most k and maximum degree at most d has domino treewidth at most c_k,d. This note gives a new simple proof of this fact, with a better bound for c_k,d, namely (9k+7)d(d+1) -1. It is also shown that a lower bound of Ω (kd) holds: there are graphs with domino treewidth at least 1/12 × kd-1, treewidth at most k, and maximum degree at most d, for many values k and d. The domino treewidth of a tree is at most its maximum degree.



Sign in / Sign up

Export Citation Format

Share Document