scholarly journals Shortest path poset of finite Coxeter groups

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Saúl A. Blanco

International audience We define a poset using the shortest paths in the Bruhat graph of a finite Coxeter group $W$ from the identity to the longest word in $W, w_0$. We show that this poset is the union of Boolean posets of rank absolute length of $w_0$; that is, any shortest path labeled by reflections $t_1,\ldots,t_m$ is fully commutative. This allows us to give a combinatorial interpretation to the lowest-degree terms in the complete $\textbf{cd}$-index of $W$. Nous définissons un poset en utilisant le plus court chemin entre l'identité et le plus long mot de $W, w_0$, dans le graph de Bruhat du groupe finie Coxeter, $W$. Nous prouvons que ce poset est l'union de posets Boolean du même rang que la longueur absolute de $w_0$; ça signifie que tous les plus courts chemins, étiquetés par réflexions $t_1,\ldots, t_m$ sont totalement commutatives. Ça nous permet de donner une interprétation combinatoire aux termes avec le moindre grade dans le $\textbf{cd}$-index complet de $W$.

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Aram Dermenjian ◽  
Christophe Hohlweg ◽  
Vincent Pilaud

International audience We investigate a poset structure that extends the weak order on a finite Coxeter group W to the set of all faces of the permutahedron of W. We call this order the facial weak order. We first provide two alternative characterizations of this poset: a first one, geometric, that generalizes the notion of inversion sets of roots, and a second one, combinatorial, that uses comparisons of the minimal and maximal length representatives of the cosets. These characterizations are then used to show that the facial weak order is in fact a lattice, generalizing a well-known result of A. Bjo ̈rner for the classical weak order. Finally, we show that any lattice congruence of the classical weak order induces a lattice congruence of the facial weak order, and we give a geometric interpretation of its classes.


Author(s):  
Fabrizio Caselli ◽  
Michele D’Adderio ◽  
Mario Marietti

Abstract We provide a weaker version of the generalized lifting property that holds in complete generality for all Coxeter groups, and we use it to show that every parabolic Bruhat interval of a finite Coxeter group is a Coxeter matroid. We also describe some combinatorial properties of the associated polytopes.


2005 ◽  
Vol 79 (1) ◽  
pp. 141-147 ◽  
Author(s):  
Götz Pfeiffer ◽  
Gerhard Röhrle

AbstractThe conjugacy classes of so-called special involutions parameterize the constituents of the action of a finite Coxeter group on the cohomology of the complement of its complexified hyperplane arrangement. In this note we give a short intrinsic characterisation of special involutions in terms of so-called bulky parabolic subgroups.


2017 ◽  
Vol 20 (1) ◽  
Author(s):  
Barbara Baumeister ◽  
Thomas Gobet ◽  
Kieran Roberts ◽  
Patrick Wegener

AbstractWe provide a necessary and sufficient condition on an element of a finite Coxeter group to ensure the transitivity of the Hurwitz action on its set of reduced decompositions into products of reflections. We show that this action is transitive if and only if the element is a parabolic quasi-Coxeter element. We call an element of the Coxeter group parabolic quasi-Coxeter element if it has a factorization into a product of reflections that generate a parabolic subgroup. We give an unusual definition of a parabolic subgroup that we show to be equivalent to the classical one for finite Coxeter groups.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Florent Hivert ◽  
Anne Schilling ◽  
Nicolas M. Thiéry

arXiv : http://arxiv.org/abs/0912.2212 International audience For any finite Coxeter group $W$, we introduce two new objects: its cutting poset and its biHecke monoid. The cutting poset, constructed using a generalization of the notion of blocks in permutation matrices, almost forms a lattice on $W$. The construction of the biHecke monoid relies on the usual combinatorial model for the $0-Hecke$ algebra $H_0(W)$, that is, for the symmetric group, the algebra (or monoid) generated by the elementary bubble sort operators. The authors previously introduced the Hecke group algebra, constructed as the algebra generated simultaneously by the bubble sort and antisort operators, and described its representation theory. In this paper, we consider instead the monoid generated by these operators. We prove that it admits |W| simple and projective modules. In order to construct the simple modules, we introduce for each $w∈W$ a combinatorial module $T_w$ whose support is the interval $[1,w]_R$ in right weak order. This module yields an algebra, whose representation theory generalizes that of the Hecke group algebra, with the combinatorics of descents replaced by that of blocks and of the cutting poset. Pour tout groupe de Coxeter fini $W$, nous définissons deux nouveaux objets : son ordre de coupures et son monoïde de Hecke double. L'ordre de coupures, construit au moyen d'une généralisation de la notion de bloc dans les matrices de permutations, est presque un treillis sur $W$. La construction du monoïde de Hecke double s'appuie sur le modèle combinatoire usuel de la $0-algèbre$ de Hecke $H_0(W)$, pour le groupe symétrique, l'algèbre (ou le monoïde) engendré par les opérateurs de tri par bulles élémentaires. Les auteurs ont introduit précédemment l'algèbre de Hecke-groupe, construite comme l'algèbre engendrée conjointement par les opérateurs de tri et d'anti-tri, et décrit sa théorie des représentations. Dans cet article, nous considérons le monoïde engendré par ces opérateurs. Nous montrons qu'il admet $|W|$ modules simples et projectifs. Afin de construire ses modules simples, nous introduisons pour tout $w∈W$ un module combinatoire $T_w$ dont le support est l'intervalle [$1,w]_R$ pour l'ordre faible droit. Ce module détermine une algèbre dont la théorie des représentations généralise celle de l'algèbre de Hecke groupe, en remplaçant la combinatoire des descentes par celle des blocs et de l'ordre de coupures.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Eli Bagno ◽  
Riccardo Biagioli ◽  
Mordechai Novick

International audience The depth statistic was defined for every Coxeter group in terms of factorizations of its elements into product of reflections. Essentially, the depth gives the minimal path cost in the Bruaht graph, where the edges have prescribed weights. We present an algorithm for calculating the depth of a signed permutation which yields a simple formula for this statistic. We use our algorithm to characterize signed permutations having depth equal to length. These are the fully commutative top-and-bottom elements defined by Stembridge. We finally give a characterization of the signed permutations in which the reflection length coincides with both the depth and the length. La statistique profondeur a été introduite par Petersen et Tenner pour tout groupe de Coxeter $W$. Elle est définie pour tout $w \in W$ à partir de ses factorisations en produit de réflexions (non nécessairement simples). Pour le type $B$, nous introduisons un algorithme calculant la profondeur, et donnant une formule explicite pour cette statistique. On utilise par ailleurs cet algorithme pour caractériser tous les éléments ayant une profondeur égale à leur longueur. Ces derniers s’avèrent être les éléments pleinement commutatifs “hauts-et-bas” introduits par Stembridge. Nous donnons enfin une caractérisation des éléments dont la longueur absolue, la profondeur et la longueur coïncident.


2007 ◽  
Vol 17 (03) ◽  
pp. 427-447 ◽  
Author(s):  
LUIS PARIS

We prove that a non-spherical irreducible Coxeter group is (directly) indecomposable and that an indefinite irreducible Coxeter group is strongly indecomposable in the sense that all its finite index subgroups are (directly) indecomposable. Let W be a Coxeter group. Write W = WX1 × ⋯ × WXb × WZ3, where WX1, … , WXb are non-spherical irreducible Coxeter groups and WZ3 is a finite one. By a classical result, known as the Krull–Remak–Schmidt theorem, the group WZ3 has a decomposition WZ3 = H1 × ⋯ × Hq as a direct product of indecomposable groups, which is unique up to a central automorphism and a permutation of the factors. Now, W = WX1 × ⋯ × WXb × H1 × ⋯ × Hq is a decomposition of W as a direct product of indecomposable subgroups. We prove that such a decomposition is unique up to a central automorphism and a permutation of the factors. Write W = WX1 × ⋯ × WXa × WZ2 × WZ3, where WX1, … , WXa are indefinite irreducible Coxeter groups, WZ2 is an affine Coxeter group whose irreducible components are all infinite, and WZ3 is a finite Coxeter group. The group WZ2 contains a finite index subgroup R isomorphic to ℤd, where d = |Z2| - b + a and b - a is the number of irreducible components of WZ2. Choose d copies R1, … , Rd of ℤ such that R = R1 × ⋯ × Rd. Then G = WX1 × ⋯ × WXa × R1 × ⋯ × Rd is a virtual decomposition of W as a direct product of strongly indecomposable subgroups. We prove that such a virtual decomposition is unique up to commensurability and a permutation of the factors.


2018 ◽  
Vol 21 (5) ◽  
pp. 817-837
Author(s):  
Sarah B. Hart ◽  
Peter J. Rowley

Abstract In this paper we prove that for W a finite Coxeter group and C a conjugacy class of W, there is always an element of C of maximal length in C which has excess zero. An element {w\in W} has excess zero if there exist elements {\sigma,\tau\in W} such that {\sigma^{2}=\tau^{2}=1,w=\sigma\tau} and {\ell(w)=\ell(\sigma)+\ell(\tau)} , {\ell} being the length function on W.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Vincent Pilaud ◽  
Christian Stump

International audience We describe edge labelings of the increasing flip graph of a subword complex on a finite Coxeter group, and study applications thereof. On the one hand, we show that they provide canonical spanning trees of the facet-ridge graph of the subword complex, describe inductively these trees, and present their close relations to greedy facets. Searching these trees yields an efficient algorithm to generate all facets of the subword complex, which extends the greedy flip algorithm for pointed pseudotriangulations. On the other hand, when the increasing flip graph is a Hasse diagram, we show that the edge labeling is indeed an EL-labeling and derive further combinatorial properties of paths in the increasing flip graph. These results apply in particular to Cambrian lattices, in which case a similar EL-labeling was recently studied by M. Kallipoliti and H. Mühle.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Sylvie Corteel ◽  
Sandrine Dasse-Hartaut

International audience We give a simple bijection between some staircase tableaux and tables of inversion. Some nice properties of the bijection allows us to define some q-Eulerian polynomials related to the staircase tableaux. We also give a combinatorial interpretation of these q-Eulerian polynomials in terms of permutations. Nous proposons une bijection simple entre certains tableaux escalier et les tables d'inversion. Cette bijection nous permet de montrer que les statistiques Euleriennes et Mahoniennes sont naturelles sur les tableaux escalier. Nous définissons des polynômes q-Eulériens et en donnons une interprétation combinatoire.


Sign in / Sign up

Export Citation Format

Share Document