scholarly journals The biHecke monoid of a finite Coxeter group

2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Florent Hivert ◽  
Anne Schilling ◽  
Nicolas M. Thiéry

arXiv : http://arxiv.org/abs/0912.2212 International audience For any finite Coxeter group $W$, we introduce two new objects: its cutting poset and its biHecke monoid. The cutting poset, constructed using a generalization of the notion of blocks in permutation matrices, almost forms a lattice on $W$. The construction of the biHecke monoid relies on the usual combinatorial model for the $0-Hecke$ algebra $H_0(W)$, that is, for the symmetric group, the algebra (or monoid) generated by the elementary bubble sort operators. The authors previously introduced the Hecke group algebra, constructed as the algebra generated simultaneously by the bubble sort and antisort operators, and described its representation theory. In this paper, we consider instead the monoid generated by these operators. We prove that it admits |W| simple and projective modules. In order to construct the simple modules, we introduce for each $w∈W$ a combinatorial module $T_w$ whose support is the interval $[1,w]_R$ in right weak order. This module yields an algebra, whose representation theory generalizes that of the Hecke group algebra, with the combinatorics of descents replaced by that of blocks and of the cutting poset. Pour tout groupe de Coxeter fini $W$, nous définissons deux nouveaux objets : son ordre de coupures et son monoïde de Hecke double. L'ordre de coupures, construit au moyen d'une généralisation de la notion de bloc dans les matrices de permutations, est presque un treillis sur $W$. La construction du monoïde de Hecke double s'appuie sur le modèle combinatoire usuel de la $0-algèbre$ de Hecke $H_0(W)$, pour le groupe symétrique, l'algèbre (ou le monoïde) engendré par les opérateurs de tri par bulles élémentaires. Les auteurs ont introduit précédemment l'algèbre de Hecke-groupe, construite comme l'algèbre engendrée conjointement par les opérateurs de tri et d'anti-tri, et décrit sa théorie des représentations. Dans cet article, nous considérons le monoïde engendré par ces opérateurs. Nous montrons qu'il admet $|W|$ modules simples et projectifs. Afin de construire ses modules simples, nous introduisons pour tout $w∈W$ un module combinatoire $T_w$ dont le support est l'intervalle [$1,w]_R$ pour l'ordre faible droit. Ce module détermine une algèbre dont la théorie des représentations généralise celle de l'algèbre de Hecke groupe, en remplaçant la combinatoire des descentes par celle des blocs et de l'ordre de coupures.

2009 ◽  
Vol 321 (8) ◽  
pp. 2230-2258 ◽  
Author(s):  
Florent Hivert ◽  
Nicolas M. Thiéry

2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Florent Hivert ◽  
Anne Schilling ◽  
Nicolas M. Thiéry

International audience The Hecke group algebra $\operatorname{H} \mathring{W}$ of a finite Coxeter group $\mathring{W}$, as introduced by the first and last author, is obtained from $\mathring{W}$ by gluing appropriately its $0$-Hecke algebra and its group algebra. In this paper, we give an equivalent alternative construction in the case when $\mathring{W}$ is the classical Weyl group associated to an affine Weyl group $W$. Namely, we prove that, for $q$ not a root of unity, $\operatorname{H} \mathring{W}$ is the natural quotient of the affine Hecke algebra $\operatorname{H}(W)(q)$ through its level $0$ representation. The proof relies on the following core combinatorial result: at level $0$ the $0$-Hecke algebra acts transitively on $\mathring{W}$. Equivalently, in type $A$, a word written on a circle can be both sorted and antisorted by elementary bubble sort operators. We further show that the level $0$ representation is a calibrated principal series representation $M(t)$ for a suitable choice of character $t$, so that the quotient factors (non trivially) through the principal central specialization. This explains in particular the similarities between the representation theory of the classical $0$-Hecke algebra and that of the affine Hecke algebra at this specialization. L'algèbre de Hecke groupe $\operatorname{H} \mathring{W}$ d'un groupe de Coxeter fini $\mathring{W}$, introduite par le premier et le dernier auteur, est obtenue en recollant de manière appropriée son algèbre de Hecke dégénérée et son algèbre de groupe. Dans cet article, nous donnons une construction alternative dans le cas où $\mathring{W}$ est un groupe de Weyl associé à un groupe de Weyl affine $W$. Plus précisément, nous montrons que quand $q$ n'est ni nul ni une racine de l'unité, $\operatorname{H} \mathring{W}$ est le quotient naturel de l'algèbre de Hecke affine $\operatorname{H}(W)(q)$ dans sa représentation de niveau $0$. Nous montrons de plus que la représentation de niveau $0$ est une représentation de série principale calibrée $M(t)$ pour un certain caractère $t$, de sorte que le quotient se factorise par la spécialisation centrale principale. Ce fait explique en particulier les similarités entre les théories des représentations de l'algèbre de Hecke dégénérée et de l'algèbre de Hecke affine sous cette spécialisation.


2007 ◽  
Vol 50 (4) ◽  
pp. 535-546
Author(s):  
Christophe Hohlweg

AbstractIf A is a subset of the set of reflections of a finite Coxeter group W, we define a sub-ℤ-module of the group algebra ℤW. We discuss cases where this submodule is a subalgebra. This family of subalgebras includes strictly the Solomon descent algebra, the group algebra and, if W is of type B, the Mantaci–Reutenauer algebra.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Bridget Eileen Tenner

International audience The Bruhat order gives a poset structure to any Coxeter group. The ideal of elements in this poset having boolean principal order ideals forms a simplicial poset. This simplicial poset defines the boolean complex for the group. In a Coxeter system of rank n, we show that the boolean complex is homotopy equivalent to a wedge of (n-1)-dimensional spheres. The number of these spheres is the boolean number, which can be computed inductively from the unlabeled Coxeter system, thus defining a graph invariant. For certain families of graphs, the boolean numbers have intriguing combinatorial properties. This work involves joint efforts with Claesson, Kitaev, and Ragnarsson. \par L'ordre de Bruhat munit tout groupe de Coxeter d'une structure de poset. L'idéal composé des éléments de ce poset engendrant des idéaux principaux ordonnés booléens, forme un poset simplicial. Ce poset simplicial définit le complexe booléen pour le groupe. Dans un système de Coxeter de rang n, nous montrons que le complexe booléen est homotopiquement équivalent à un bouquet de sphères de dimension (n-1). Le nombre de ces sphères est le nombre booléen, qui peut être calculé inductivement à partir du système de Coxeter non-étiquetté; définissant ainsi un invariant de graphe. Pour certaines familles de graphes, les nombres booléens satisfont des propriétés combinatoires intriguantes. Ce travail est une collaboration entre Claesson, Kitaev, et Ragnarsson.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Aram Dermenjian ◽  
Christophe Hohlweg ◽  
Vincent Pilaud

International audience We investigate a poset structure that extends the weak order on a finite Coxeter group W to the set of all faces of the permutahedron of W. We call this order the facial weak order. We first provide two alternative characterizations of this poset: a first one, geometric, that generalizes the notion of inversion sets of roots, and a second one, combinatorial, that uses comparisons of the minimal and maximal length representatives of the cosets. These characterizations are then used to show that the facial weak order is in fact a lattice, generalizing a well-known result of A. Bjo ̈rner for the classical weak order. Finally, we show that any lattice congruence of the classical weak order induces a lattice congruence of the facial weak order, and we give a geometric interpretation of its classes.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Saúl A. Blanco

International audience We define a poset using the shortest paths in the Bruhat graph of a finite Coxeter group $W$ from the identity to the longest word in $W, w_0$. We show that this poset is the union of Boolean posets of rank absolute length of $w_0$; that is, any shortest path labeled by reflections $t_1,\ldots,t_m$ is fully commutative. This allows us to give a combinatorial interpretation to the lowest-degree terms in the complete $\textbf{cd}$-index of $W$. Nous définissons un poset en utilisant le plus court chemin entre l'identité et le plus long mot de $W, w_0$, dans le graph de Bruhat du groupe finie Coxeter, $W$. Nous prouvons que ce poset est l'union de posets Boolean du même rang que la longueur absolute de $w_0$; ça signifie que tous les plus courts chemins, étiquetés par réflexions $t_1,\ldots, t_m$ sont totalement commutatives. Ça nous permet de donner une interprétation combinatoire aux termes avec le moindre grade dans le $\textbf{cd}$-index complet de $W$.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Vincent Pilaud ◽  
Christian Stump

International audience We describe edge labelings of the increasing flip graph of a subword complex on a finite Coxeter group, and study applications thereof. On the one hand, we show that they provide canonical spanning trees of the facet-ridge graph of the subword complex, describe inductively these trees, and present their close relations to greedy facets. Searching these trees yields an efficient algorithm to generate all facets of the subword complex, which extends the greedy flip algorithm for pointed pseudotriangulations. On the other hand, when the increasing flip graph is a Hasse diagram, we show that the edge labeling is indeed an EL-labeling and derive further combinatorial properties of paths in the increasing flip graph. These results apply in particular to Cambrian lattices, in which case a similar EL-labeling was recently studied by M. Kallipoliti and H. Mühle.


2004 ◽  
Vol Vol. 6 no. 2 ◽  
Author(s):  
Toufik Mansour

International audience Recently, Green and Losonczy~GL1,GL2 introduced \emphfreely braided permutation as a special class of restricted permutations has arisen in representation theory. The freely braided permutations were introduced and studied as the upper bound for the number of commutation classes of reduced expressions for an element of a simply laced Coxeter group is achieved if and only if when the element is freely braided. In this paper, we prove that the generating function for the number of freely braided permutations in S_n is given by \par (1-3x-2x^2+(1+x)√1-4x) / (1-4x-x^2+(1-x^2)√1-4x).\par


Sign in / Sign up

Export Citation Format

Share Document