The height of scaled attachment random recursive trees
2010 ◽
Vol DMTCS Proceedings vol. AM,...
(Proceedings)
◽
Keyword(s):
International audience We study depth properties of a general class of random recursive trees where each node $n$ attaches to the random node $\lfloor nX_n \rfloor$ and $X_0, \ldots , X_n$ is a sequence of i.i.d. random variables taking values in $[0,1)$. We call such trees scaled attachment random recursive trees (SARRT). We prove that the height $H_n$ of a SARRT is asymptotically given by $H_n \sim \alpha_{\max} \log n$ where $\alpha_{\max}$ is a constant depending only on the distribution of $X_0$ whenever $X_0$ has a bounded density. This gives a new elementary proof for the height of uniform random recursive trees $H_n \sim e \log n$ that does not use branching random walks.
1973 ◽
Vol 10
(3)
◽
pp. 401-416
◽
2008 ◽
Vol DMTCS Proceedings vol. AI,...
(Proceedings)
◽
2014 ◽
Vol 46
(02)
◽
pp. 400-421
◽
2014 ◽
Vol 46
(2)
◽
pp. 400-421
◽
2016 ◽
Vol 26
(6)
◽
pp. 3659-3698
◽
2013 ◽
Vol 42
(16)
◽
pp. 3001-3010
◽
2003 ◽
Vol DMTCS Proceedings vol. AC,...
(Proceedings)
◽
Keyword(s):
2017 ◽
Vol 14
(1)
◽
pp. 381
2008 ◽
Vol DMTCS Proceedings vol. AJ,...
(Proceedings)
◽
Keyword(s):