scholarly journals Closed paths whose steps are roots of unity

2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Gilbert Labelle ◽  
Annie Lacasse

International audience We give explicit formulas for the number $U_n(N)$ of closed polygonal paths of length $N$ (starting from the origin) whose steps are $n^{\textrm{th}}$ roots of unity, as well as asymptotic expressions for these numbers when $N \rightarrow \infty$. We also prove that the sequences $(U_n(N))_{N \geq 0}$ are $P$-recursive for each fixed $n \geq 1$ and leave open the problem of determining the values of $N$ for which the $\textit{dual}$ sequences $(U_n(N))_{n \geq 1}$ are $P$-recursive. Nous donnons des formules explicites pour le nombre $U_n(N)$ de chemins polygonaux fermés de longueur $N$ (débutant à l'origine) dont les pas sont des racines $n$-ièmes de l'unité, ainsi que des expressions asymptotiques pour ces nombres lorsque $N \rightarrow \infty$. Nous démontrons aussi que les suites $(U_n(N))_{N \geq 0}$ sont $P$-récursives pour chaque $n \geq 1$ fixé et laissons ouvert le problème de déterminer les valeurs de $N$ pour lesquelles les suites $\textit{duales}$ $(U_n(N))_{n \geq 1}$ sont $P$-récursives.

2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Patricia Muldoon ◽  
Margaret A. Readdy

International audience We study enumerative and homological properties of the Rees product of the cubical lattice with the chain. We give several explicit formulas for the Möbius function. The last formula is expressed in terms of the permanent of a matrix and is given by a bijective proof. Nous étudions des propriétés énumératives et homologiques du produit de Rees du treillis cubique avec la chaîne. Nous donnons plusieurs formules explicites de la fonction de Möbius de ce poset. La dernière de ces formules est exprimée en termes du permanent d’une matrice et le résultat est donné par une preuve bijective.


2014 ◽  
Vol Vol. 16 no. 1 (Combinatorics) ◽  
Author(s):  
Aubrey Blecher ◽  
Charlotte Brennan ◽  
Arnold Knopfmacher

Combinatorics International audience We consider compositions of n, i.e., sequences of positive integers (or parts) (σi)i=1k where σ1+σ2+...+σk=n. We define a maximum to be any part which is not less than any other part. The variable of interest is the size of the descent immediately following the first and the last maximum. Using generating functions and Mellin transforms, we obtain asymptotic expressions for the average size of these descents. Finally, we show with the use of a simple bijection between the compositions of n for n>1, that on average the descent after the last maximum is greater than the descent after the first.


2009 ◽  
Vol Vol. 11 no. 1 (Combinatorics) ◽  
Author(s):  
Yidong Sun ◽  
Zhiping Wang

Combinatorics International audience The problem of string pattern avoidance in generalized non-crossing trees is studied. The generating functions for generalized non-crossing trees avoiding string patterns of length one and two are obtained. The Lagrange inversion formula is used to obtain the explicit formulas for some special cases. A bijection is also established between generalized non-crossing trees with special string pattern avoidance and little Schr ̈oder paths.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Max Glick

International audience The pentagram map, introduced by R. Schwartz, is defined by the following construction: given a polygon as input, draw all of its ``shortest'' diagonals, and output the smaller polygon which they cut out. We employ the machinery of cluster algebras to obtain explicit formulas for the iterates of the pentagram map. L'application pentagramme de R. Schwartz est définie par la construction suivante: on trace les diagonales ``les plus courtes'' d'un polygone donné en entrée et on retourne en sortie le plus petit polygone que ces diagonales découpent. Nous employons la machinerie des algèbres ``clusters'' pour obtenir des formules explicites pour les itérations de l'application pentagramme.


2008 ◽  
Vol Vol. 10 no. 3 (Analysis of Algorithms) ◽  
Author(s):  
Helmut Prodinger

Analysis of Algorithms International audience For Dyck paths (nonnegative symmetric) random walks, the location of the first maximum within the first sojourn is studied. Generating functions and explicit resp. asymptotic expressions for the average are derived. Related parameters are also discussed.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Harm Derksen ◽  
Alex Fink

International audience Many important invariants for matroids and polymatroids, such as the Tutte polynomial, the Billera-Jia-Reiner quasi-symmetric function, and the invariant $\mathcal{G}$ introduced by the first author, are valuative. In this paper we construct the $\mathbb{Z}$-modules of all $\mathbb{Z}$-valued valuative functions for labelled matroids and polymatroids on a fixed ground set, and their unlabelled counterparts, the $\mathbb{Z}$-modules of valuative invariants. We give explicit bases for these modules and for their dual modules generated by indicator functions of polytopes, and explicit formulas for their ranks. Our results confirm a conjecture of the first author that $\mathcal{G}$ is universal for valuative invariants. Beaucoup des invariants importants des matroïdes et polymatroïdes, tels que le polynôme de Tutte, la fonction quasi-symmetrique de Billera-Jia-Reiner, et l'invariant $\mathcal{G}$ introduit par le premier auteur, sont valuatifs. Dans cet article nous construisons les $\mathbb{Z}$-modules de fonctions valuatives aux valeurs entières des matroïdes et polymatroïdes étiquetés définis sur un ensemble fixe, et leurs équivalents pas étiquetés, les $\mathbb{Z}$-modules des invariants valuatifs. Nous fournissons des bases des ces modules et leurs modules duels, engendrés par fonctions caractéristiques des polytopes, et des formules explicites donnant leurs rangs. Nos résultats confirment une conjecture du premier auteur, que $\mathcal{G}$ soit universel pour les invariants valuatifs.


2005 ◽  
Vol DMTCS Proceedings vol. AD,... (Proceedings) ◽  
Author(s):  
Y. Baryshnikov ◽  
E. Coffman ◽  
J. Feng ◽  
P. Momčilović

International audience The Additive-Increase-Multiplicative Decrease (AIMD) algorithm is an effective technique for controlling competitive access to a shared resource. Let $N$ be the number of users and let $x_i(t)$ be the amount of the resource in possession of the $i$-th user. The allocations $x_i(t)$ increase linearly until the aggregate demand $\sum_i x_i(t)$ exceeds a given nominal capacity, at which point a user is selected at a random time and its allocation reduced from $x_i(t)$ to $x_i(t)/ \gamma$ , for some given parameter $\gamma >1$. In our new, generalized version of AIMD, the choice of users to have their allocations cut is determined by a selection rule whereby the probabilities of selection are proportional to $x_i^{\alpha} (t)/ \sum_j x_j^{\alpha}$, with $\alpha$ a parameter of the policy. Variations of parameters allows one to adjust fairness under AIMD (as measured for example by the variance of $x_i(t)$) as well as to provide for differentiated service. The primary contribution here is an asymptotic, large-$N$ analysis of the above nonlinear AIMD algorithm within a baseline mathematical model that leads to explicit formulas for the density function governing the allocations $x_i(t)$ in statistical equilibrium. The analysis yields explicit formulas for measures of fairness and several techniques for supplying differentiated service via AIMD.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Anne-Sophie Gleitz

International audience Shapiro and Chekhov (2011) have introduced the notion of <i>generalised cluster algebra</i>; we focus on an example in type $C_n$. On the other hand, Chari and Pressley (1997), as well as Frenkel and Mukhin (2002), have studied the <i>restricted integral form</i> $U^{\mathtt{res}}_ε (\widehat{\mathfrak{g}})$ of a quantum affine algebra $U_q(\widehat{\mathfrak{g}})$ where $q=ε$ is a root of unity. Our main result states that the Grothendieck ring of a tensor subcategory $C_{ε^\mathbb{z}}$ of representations of $U^{\mathtt{res}}_ε (L\mathfrak{sl}_2)$ is a generalised cluster algebra of type $C_{l−1}$, where $l$ is the order of $ε^2$. We also state a conjecture for $U^{\mathtt{res}}_ε (L\mathfrak{sl}_3)$, and sketch a proof for $l=2$. Shapiro et Chekhov (2011) ont introduit la notion d'<i>algèbre amassée généralisée</i>; nous étudions un exemple en type $C_n$. Par ailleurs, Chari et Pressley (1997), ainsi que Frenkel et Mukhin (2002), ont étudié la <i>forme entière restreinte</i> $U^{\mathtt{res}}_ε (\widehat{\mathfrak{g}})$ d'une algèbre affine quantique $U_q(\widehat{\mathfrak{g}})$ où $q=ε$ est une racine de l'unité. Notre résultat principal affirme que l'anneau de Grothendieck d'une sous-catégorie tensorielle $C_{ε^\mathbb{z}}$ de représentations de $U^{\mathtt{res}}_ε (L\mathfrak{sl}_2)$ est une algèbre amassée généralisée de type $C_{l−1}$, où $l$ est l'ordre de $ε^2$. Nous conjecturons une propriété similaire pour $U^{\mathtt{res}}_ε (L\mathfrak{sl}_3)$ et donnons un aperçu de la preuve pour $l=2$.


2011 ◽  
Vol Vol. 13 no. 3 (Combinatorics) ◽  
Author(s):  
Yidong Sun ◽  
Yanjie Xu

Combinatorics International audience Recently, Deutsch and Elizalde studied the largest fixed points of permutations. Motivated by their work, we consider the analogous problems in weighted set partitions. Let A (n,k) (t) denote the total weight of partitions on [n + 1] = \1,2,..., n + 1\ with the largest singleton \k + 1\. In this paper, explicit formulas for A (n,k) (t) and many combinatorial identities involving A (n,k) (t) are obtained by umbral operators and combinatorial methods. In particular, the permutation case leads to an identity related to tree enumerations, namely, [GRAPHICS] where D-k is the number of permutations of [k] with no fixed points.


Sign in / Sign up

Export Citation Format

Share Document