scholarly journals Asymptotic analysis of a nonlinear AIMD algorithm

2005 ◽  
Vol DMTCS Proceedings vol. AD,... (Proceedings) ◽  
Author(s):  
Y. Baryshnikov ◽  
E. Coffman ◽  
J. Feng ◽  
P. Momčilović

International audience The Additive-Increase-Multiplicative Decrease (AIMD) algorithm is an effective technique for controlling competitive access to a shared resource. Let $N$ be the number of users and let $x_i(t)$ be the amount of the resource in possession of the $i$-th user. The allocations $x_i(t)$ increase linearly until the aggregate demand $\sum_i x_i(t)$ exceeds a given nominal capacity, at which point a user is selected at a random time and its allocation reduced from $x_i(t)$ to $x_i(t)/ \gamma$ , for some given parameter $\gamma >1$. In our new, generalized version of AIMD, the choice of users to have their allocations cut is determined by a selection rule whereby the probabilities of selection are proportional to $x_i^{\alpha} (t)/ \sum_j x_j^{\alpha}$, with $\alpha$ a parameter of the policy. Variations of parameters allows one to adjust fairness under AIMD (as measured for example by the variance of $x_i(t)$) as well as to provide for differentiated service. The primary contribution here is an asymptotic, large-$N$ analysis of the above nonlinear AIMD algorithm within a baseline mathematical model that leads to explicit formulas for the density function governing the allocations $x_i(t)$ in statistical equilibrium. The analysis yields explicit formulas for measures of fairness and several techniques for supplying differentiated service via AIMD.

2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Gilbert Labelle ◽  
Annie Lacasse

International audience We give explicit formulas for the number $U_n(N)$ of closed polygonal paths of length $N$ (starting from the origin) whose steps are $n^{\textrm{th}}$ roots of unity, as well as asymptotic expressions for these numbers when $N \rightarrow \infty$. We also prove that the sequences $(U_n(N))_{N \geq 0}$ are $P$-recursive for each fixed $n \geq 1$ and leave open the problem of determining the values of $N$ for which the $\textit{dual}$ sequences $(U_n(N))_{n \geq 1}$ are $P$-recursive. Nous donnons des formules explicites pour le nombre $U_n(N)$ de chemins polygonaux fermés de longueur $N$ (débutant à l'origine) dont les pas sont des racines $n$-ièmes de l'unité, ainsi que des expressions asymptotiques pour ces nombres lorsque $N \rightarrow \infty$. Nous démontrons aussi que les suites $(U_n(N))_{N \geq 0}$ sont $P$-récursives pour chaque $n \geq 1$ fixé et laissons ouvert le problème de déterminer les valeurs de $N$ pour lesquelles les suites $\textit{duales}$ $(U_n(N))_{n \geq 1}$ sont $P$-récursives.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Patricia Muldoon ◽  
Margaret A. Readdy

International audience We study enumerative and homological properties of the Rees product of the cubical lattice with the chain. We give several explicit formulas for the Möbius function. The last formula is expressed in terms of the permanent of a matrix and is given by a bijective proof. Nous étudions des propriétés énumératives et homologiques du produit de Rees du treillis cubique avec la chaîne. Nous donnons plusieurs formules explicites de la fonction de Möbius de ce poset. La dernière de ces formules est exprimée en termes du permanent d’une matrice et le résultat est donné par une preuve bijective.


2014 ◽  
Vol Vol. 16 no. 3 (Graph Theory) ◽  
Author(s):  
Anthony Bonato ◽  
William B. Kinnersley ◽  
Pawel Pralat

Graph Theory International audience We study a two-person game played on graphs based on the widely studied chip-firing game. Players Max and Min alternately place chips on the vertices of a graph. When a vertex accumulates as many chips as its degree, it fires, sending one chip to each neighbour; this may in turn cause other vertices to fire. The game ends when vertices continue firing forever. Min seeks to minimize the number of chips played during the game, while Max seeks to maximize it. When both players play optimally, the length of the game is the toppling number of a graph G, and is denoted by t(G). By considering strategies for both players and investigating the evolution of the game with differential equations, we provide asymptotic bounds on the toppling number of the complete graph. In particular, we prove that for sufficiently large n 0.596400 n2 < t(Kn) < 0.637152 n2. Using a fractional version of the game, we couple the toppling numbers of complete graphs and the binomial random graph G(n,p). It is shown that for pn ≥n² / √ log(n) asymptotically almost surely t(G(n,p))=(1+o(1)) p t(Kn).


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Sara Billey ◽  
Matthew Fahrbach ◽  
Alan Talmage

International audience Given a permutation $\pi=\pi_1\pi_2\cdots \pi_n \in S_n$, we say an index $i$ is a peak if $\pi_{i-1} < \pi_i > \pi_{i+1}$. Let $P(\pi)$ denote the set of peaks of $\pi$. Given any set $S$ of positive integers, define ${P_S(n)=\{\pi\in S_n:P(\pi)=S\}}$. Billey-Burdzy-Sagan showed that for all fixed subsets of positive integers $S$ and sufficiently large $n$, $|P_S(n)|=p_S(n)2^{n-|S|-1}$ for some polynomial $p_S(x)$ depending on $S$. They conjectured that the coefficients of $p_S(x)$ expanded in a binomial coefficient basis centered at $max(S)$ are all positive. We show that this is a consequence of a stronger conjecture that bounds the modulus of the roots of $p_S(x)$. Furthermore, we give an efficient explicit formula for peak polynomials in the binomial basis centered at $0$, which we use to identify many integer roots of peak polynomials along with certain inequalities and identities. Etant donné une permutation $\pi=\pi_1\pi_2\cdots \pi_n \in S_n$ du groupe symétrique, nous disons qu’un indice i est unsommet si $\pi_{i-1} < \pi_i > \pi_{i+1}$. Soit $P(\pi)$ l’ensemble des sommets de $\pi$. Billey-Burdzy-Sagan ont montré que,pour tout sous-ensemble d’entiers positifs S et n suffisamment grand, le nombre de permutations de $n$ éléments avecensemble de sommets $S$ est $|P_S(n)|=p_S(n)2^{n-|S|-1}$ pour un certain polynôme $p_S(x)$ dépendant de $S$.. Ils ont fait la conjectureque les coefficients du polynôme $p_S(x)$ exprimé dans une base de coefficients binomiaux centrée en $max(S)$ sont touspositifs. Nous montrons que cela découle d’une conjecture plus forte qui borne le module des racines du polynôme$p_S(x)$. De plus, nous donnons une formule explicite efficace pour les polynômes sommets dans la base binomialecentrée en $0$, que nous utilisons pour identifier plusieurs racines entières de polynômes sommets, ainsi que certainesinégalités et identités.


2009 ◽  
Vol Vol. 11 no. 1 (Combinatorics) ◽  
Author(s):  
Yidong Sun ◽  
Zhiping Wang

Combinatorics International audience The problem of string pattern avoidance in generalized non-crossing trees is studied. The generating functions for generalized non-crossing trees avoiding string patterns of length one and two are obtained. The Lagrange inversion formula is used to obtain the explicit formulas for some special cases. A bijection is also established between generalized non-crossing trees with special string pattern avoidance and little Schr ̈oder paths.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Max Glick

International audience The pentagram map, introduced by R. Schwartz, is defined by the following construction: given a polygon as input, draw all of its ``shortest'' diagonals, and output the smaller polygon which they cut out. We employ the machinery of cluster algebras to obtain explicit formulas for the iterates of the pentagram map. L'application pentagramme de R. Schwartz est définie par la construction suivante: on trace les diagonales ``les plus courtes'' d'un polygone donné en entrée et on retourne en sortie le plus petit polygone que ces diagonales découpent. Nous employons la machinerie des algèbres ``clusters'' pour obtenir des formules explicites pour les itérations de l'application pentagramme.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Harm Derksen ◽  
Alex Fink

International audience Many important invariants for matroids and polymatroids, such as the Tutte polynomial, the Billera-Jia-Reiner quasi-symmetric function, and the invariant $\mathcal{G}$ introduced by the first author, are valuative. In this paper we construct the $\mathbb{Z}$-modules of all $\mathbb{Z}$-valued valuative functions for labelled matroids and polymatroids on a fixed ground set, and their unlabelled counterparts, the $\mathbb{Z}$-modules of valuative invariants. We give explicit bases for these modules and for their dual modules generated by indicator functions of polytopes, and explicit formulas for their ranks. Our results confirm a conjecture of the first author that $\mathcal{G}$ is universal for valuative invariants. Beaucoup des invariants importants des matroïdes et polymatroïdes, tels que le polynôme de Tutte, la fonction quasi-symmetrique de Billera-Jia-Reiner, et l'invariant $\mathcal{G}$ introduit par le premier auteur, sont valuatifs. Dans cet article nous construisons les $\mathbb{Z}$-modules de fonctions valuatives aux valeurs entières des matroïdes et polymatroïdes étiquetés définis sur un ensemble fixe, et leurs équivalents pas étiquetés, les $\mathbb{Z}$-modules des invariants valuatifs. Nous fournissons des bases des ces modules et leurs modules duels, engendrés par fonctions caractéristiques des polytopes, et des formules explicites donnant leurs rangs. Nos résultats confirment une conjecture du premier auteur, que $\mathcal{G}$ soit universel pour les invariants valuatifs.


2011 ◽  
Vol Vol. 13 no. 3 (Combinatorics) ◽  
Author(s):  
Yidong Sun ◽  
Yanjie Xu

Combinatorics International audience Recently, Deutsch and Elizalde studied the largest fixed points of permutations. Motivated by their work, we consider the analogous problems in weighted set partitions. Let A (n,k) (t) denote the total weight of partitions on [n + 1] = \1,2,..., n + 1\ with the largest singleton \k + 1\. In this paper, explicit formulas for A (n,k) (t) and many combinatorial identities involving A (n,k) (t) are obtained by umbral operators and combinatorial methods. In particular, the permutation case leads to an identity related to tree enumerations, namely, [GRAPHICS] where D-k is the number of permutations of [k] with no fixed points.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Amel Kaouche ◽  
Pierre Leroux

International audience We study graph weights (i.e., graph invariants) which arise naturally in Mayer's theory and Ree-Hoover's theory of virial expansions in the context of a non-ideal gas. We give special attention to the Second Mayer weight $w_M(c)$ and the Ree-Hoover weight $w_{RH}(c)$ of a $2$-connected graph $c$ which arise from the hard-core continuum gas in one dimension. These weights are computed using signed volumes of convex polytopes naturally associated with the graph $c$. Among our results are the values of Mayer's weight and Ree-Hoover's weight for all $2$-connected graphs $b$ of size at most $8$, and explicit formulas for certain infinite families. Nous étudions les poids de graphes (c'est-à-dire, les invariants de graphes) qui apparaissent naturellement dans la théorie de Mayer et la théorie de Ree-Hoover pour le développement du viriel dans le contexte d'un gaz imparfait. Nous donnons une attention particulière au deuxième poids $w_M(c)$ de Mayer et au poids $w_{RH}(c)$ de Ree-Hoover d'un graphe $2$-connexe $c$ dans le cas d'un gaz à noyaux durs et à positions continues en une dimension. Ces poids sont calculés à partir de volumes signés de polytopes convexes associés naturellement au graphe $c$. Parmi nos résultats sont les valeurs du poids de Mayer et du poids de Ree-Hoover pour tous les graphes $2$-connexes $b$ de taille au plus $8$, et des formules explicites pour certaines familles infinies.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Niklas Eriksen ◽  
Ragnar Freij ◽  
Johan Wästlund

International audience We enumerate derangements with descents in prescribed positions. A generating function was given by Guo-Niu Han and Guoce Xin in 2007. We give a combinatorial proof of this result, and derive several explicit formulas. To this end, we consider fixed point $\lambda$-coloured permutations, which are easily enumerated. Several formulae regarding these numbers are given, as well as a generalisation of Euler's difference tables. We also prove that except in a trivial special case, if a permutation $\pi$ is chosen uniformly among all permutations on $n$ elements, the events that $\pi$ has descents in a set $S$ of positions, and that $\pi$ is a derangement, are positively correlated.


Sign in / Sign up

Export Citation Format

Share Document