scholarly journals The Limiting Distribution for the Number of Symbol Comparisons Used by QuickSort is Nondegenerate (Extended Abstract)

2012 ◽  
Vol DMTCS Proceedings vol. AQ,... (Proceedings) ◽  
Author(s):  
Patrick Bindjeme ◽  
james Allen fill

International audience In a continuous-time setting, Fill (2012) proved, for a large class of probabilistic sources, that the number of symbol comparisons used by $\texttt{QuickSort}$, when centered by subtracting the mean and scaled by dividing by time, has a limiting distribution, but proved little about that limiting random variable $Y$—not even that it is nondegenerate. We establish the nondegeneracy of $Y$. The proof is perhaps surprisingly difficult.

2005 ◽  
Vol DMTCS Proceedings vol. AD,... (Proceedings) ◽  
Author(s):  
Charlotte Brennan ◽  
Arnold Knopfmacher

International audience We consider words or strings of characters $a_1a_2a_3 \ldots a_n$ of length $n$, where the letters $a_i \in \mathbb{Z}$ are independently generated with a geometric probability $\mathbb{P} \{ X=k \} = pq^{k-1}$ where $p+q=1$. Let $d$ be a fixed nonnegative integer. We say that we have an ascent of size $d$ or more if $a_{i+1} \geq a_i+d$. We determine the mean, variance and limiting distribution of the number of ascents of size $d$ or more in a random geometrically distributed word.


2006 ◽  
Vol DMTCS Proceedings vol. AG,... (Proceedings) ◽  
Author(s):  
Jérémie Bourdon ◽  
Alban Mancheron

International audience In computational biology, a large amount of problems, such as pattern discovery, deals with the comparison of several sequences (of nucleotides, proteins or genes for instance). Very often, algorithms that address this problem use score functions that reflect a notion of similarity between the sequences. The most efficient methods take benefit from theoretical knowledge of the classical behavior of these score functions such as their mean, their variance, and sometime their asymptotic distribution in a given probabilistic model. In this paper, we study a recent family of score functions introduced in Mancheron 2003, which allows to compare two words having the same length. Here, the similarity takes into account all matches and mismatches between two sequences and not only the longest common subsequence as in the case of classical algorithms such as BLAST or FASTA. Based on generating functions, we provide closed formulas for the mean and the variance of these functions in an independent probabilistic model. Finally, we prove that every function in this family asymptotically behaves as a Gaussian random variable.


2008 ◽  
Vol DMTCS Proceedings vol. AI,... (Proceedings) ◽  
Author(s):  
Christopher Eagle ◽  
Zhicheng Gao ◽  
Mohamed Omar ◽  
Daniel Panario ◽  
Bruce Richmond

International audience We study the number of encryptions necessary to revoke a set of users in the complete subtree scheme (CST) and the subset-difference scheme (SD). These are well-known tree based broadcast encryption schemes. Park and Blake in: Journal of Discrete Algorithms, vol. 4, 2006, pp. 215―238, give the mean number of encryptions for these schemes. We continue their analysis and show that the limiting distribution of the number of encryptions for these schemes is normal. This implies that the mean numbers of Park and Blake are good estimates for the number of necessary encryptions used by these schemes.


2009 ◽  
Vol Vol. 11 no. 1 (Combinatorics) ◽  
Author(s):  
Charlotte Brennan ◽  
Arnold Knopfmacher

Combinatorics International audience A composition of a positive integer n is a finite sequence of positive integers a(1), a(2), ..., a(k) such that a(1) + a(2) + ... + a(k) = n. Let d be a fixed nonnegative integer. We say that we have an ascent of size d or more if a(i+1) >= a(i) + d. We determine the mean, variance and limiting distribution of the number of ascents of size d or more in the set of compositions of n. We also study the average size of the greatest ascent over all compositions of n.


2006 ◽  
Vol DMTCS Proceedings vol. AG,... (Proceedings) ◽  
Author(s):  
Markus Kuba ◽  
Alois Panholzer

International audience Grown simple families of increasing trees are a subclass of increasing trees, which can be constructed by an insertion process. Three such tree families contained in the grown simple families of increasing trees are of particular interest: $\textit{recursive trees}$, $\textit{plane-oriented recursive trees}$ and $\textit{binary increasing trees}$. Here we present a general approach for the analysis of a number of label-based parameters in a random grown simple increasing tree of size $n$ as, e.g., $\textit{the degree of the node labeled j}$, $\textit{the subtree-size of the node labeled j}$, etc. Further we apply the approach to the random variable $X_{n,j,a}$, which counts the number of size-$a$ branches attached to the node labeled $j$ (= subtrees of size $a$ rooted at the children of the node labeled $j$) in a random grown simple increasing tree of size $n$. We can give closed formulæ for the probability distribution and the factorial moments. Furthermore limiting distribution results for $X_{n,j,a}$ are given dependent on the growth behavior of $j=j(n)$ compared to $n$.


2021 ◽  
Vol 73 (1) ◽  
pp. 62-67
Author(s):  
Ibrahim A. Ahmad ◽  
A. R. Mugdadi

For a sequence of independent, identically distributed random variable (iid rv's) [Formula: see text] and a sequence of integer-valued random variables [Formula: see text], define the random quantiles as [Formula: see text], where [Formula: see text] denote the largest integer less than or equal to [Formula: see text], and [Formula: see text] the [Formula: see text]th order statistic in a sample [Formula: see text] and [Formula: see text]. In this note, the limiting distribution and its exact order approximation are obtained for [Formula: see text]. The limiting distribution result we obtain extends the work of several including Wretman[Formula: see text]. The exact order of normal approximation generalizes the fixed sample size results of Reiss[Formula: see text]. AMS 2000 subject classification: 60F12; 60F05; 62G30.


2021 ◽  
Vol 58 (2) ◽  
pp. 335-346
Author(s):  
Mackenzie Simper

AbstractConsider an urn containing balls labeled with integer values. Define a discrete-time random process by drawing two balls, one at a time and with replacement, and noting the labels. Add a new ball labeled with the sum of the two drawn labels. This model was introduced by Siegmund and Yakir (2005) Ann. Prob.33, 2036 for labels taking values in a finite group, in which case the distribution defined by the urn converges to the uniform distribution on the group. For the urn of integers, the main result of this paper is an exponential limit law. The mean of the exponential is a random variable with distribution depending on the starting configuration. This is a novel urn model which combines multi-drawing and an infinite type of balls. The proof of convergence uses the contraction method for recursive distributional equations.


2011 ◽  
Vol 18 (01) ◽  
pp. 71-85
Author(s):  
Fabrizio Cacciafesta

We provide a simple way to visualize the variance and the mean absolute error of a random variable with finite mean. Some application to options theory and to second order stochastic dominance is given: we show, among other, that the "call-put parity" may be seen as a Taylor formula.


1980 ◽  
Vol 12 (1) ◽  
pp. 81-93 ◽  
Author(s):  
B. Klein ◽  
P. D. M. MacDonald

The multitype continuous-time Markov branching process has many biological applications where the environmental factors vary in a periodic manner. Circadian or diurnal rhythms in cell kinetics are an important example. It is shown that in the supercritical positively regular case the proportions of individuals of various types converge in probability to a non-random periodic vector, independent of the initial conditions, while the absolute numbers of individuals of various types converge in probability to that vector multiplied by a random variable whose distribution depends on the initial conditions. It is noted that the proofs are straightforward extensions of the well-known results for a constant environment.


Sign in / Sign up

Export Citation Format

Share Document