mean absolute error
Recently Published Documents


TOTAL DOCUMENTS

440
(FIVE YEARS 275)

H-INDEX

22
(FIVE YEARS 7)

2022 ◽  
Vol 18 (2) ◽  
pp. 1-39
Author(s):  
Yannic Schröder ◽  
Lars Wolf

Ranging and subsequent localization have become more and more critical in today’s factories and logistics. Tracking goods precisely enables just-in-time manufacturing processes. We present the InPhase system for ranging and localization applications. It employs narrowband 2.4 GHz IEEE 802.15.4 radio transceivers to acquire the radio channel’s phase response. In comparison, most other systems employ time-of-flight schemes with Ultra Wideband transceivers. Our software can be used with existing wireless sensor network hardware, providing ranging and localization for existing devices at no extra cost. The introduced Complex-valued Distance Estimation algorithm evaluates the phase response to compute the distance between two radio devices. We achieve high ranging accuracy and precision with a mean absolute error of 0.149 m and a standard deviation of 0.104 m. We show that our algorithm is resilient against noise and burst errors from the phase-data acquisition. Further, we present a localization algorithm based on a particle filter implementation. It achieves a mean absolute error of 0.95 m in a realistic 3D live tracking scenario.


2022 ◽  
Vol 13 ◽  
Author(s):  
Niklas Wulms ◽  
Lea Redmann ◽  
Christine Herpertz ◽  
Nadine Bonberg ◽  
Klaus Berger ◽  
...  

Introduction: White matter hyperintensities of presumed vascular origin (WMH) are an important magnetic resonance imaging marker of cerebral small vessel disease and are associated with cognitive decline, stroke, and mortality. Their relevance in healthy individuals, however, is less clear. This is partly due to the methodological challenge of accurately measuring rare and small WMH with automated segmentation programs. In this study, we tested whether WMH volumetry with FMRIB software library v6.0 (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) Brain Intensity AbNormality Classification Algorithm (BIANCA), a customizable and trainable algorithm that quantifies WMH volume based on individual data training sets, can be optimized for a normal aging population.Methods: We evaluated the effect of varying training sample sizes on the accuracy and the robustness of the predicted white matter hyperintensity volume in a population (n = 201) with a low prevalence of confluent WMH and a substantial proportion of participants without WMH. BIANCA was trained with seven different sample sizes between 10 and 40 with increments of 5. For each sample size, 100 random samples of T1w and FLAIR images were drawn and trained with manually delineated masks. For validation, we defined an internal and external validation set and compared the mean absolute error, resulting from the difference between manually delineated and predicted WMH volumes for each set. For spatial overlap, we calculated the Dice similarity index (SI) for the external validation cohort.Results: The study population had a median WMH volume of 0.34 ml (IQR of 1.6 ml) and included n = 28 (18%) participants without any WMH. The mean absolute error of the difference between BIANCA prediction and manually delineated masks was minimized and became more robust with an increasing number of training participants. The lowest mean absolute error of 0.05 ml (SD of 0.24 ml) was identified in the external validation set with a training sample size of 35. Compared to the volumetric overlap, the spatial overlap was poor with an average Dice similarity index of 0.14 (SD 0.16) in the external cohort, driven by subjects with very low lesion volumes.Discussion: We found that the performance of BIANCA, particularly the robustness of predictions, could be optimized for use in populations with a low WMH load by enlargement of the training sample size. Further work is needed to evaluate and potentially improve the prediction accuracy for low lesion volumes. These findings are important for current and future population-based studies with the majority of participants being normal aging people.


2022 ◽  
Author(s):  
Maya Khatun ◽  
Sayan Paul ◽  
Saikat Roy ◽  
Subhasis Dey ◽  
Anakuthil Anoop

We present a benchmark study on popular density functionals for their efficiency and accuracy in the geometry and relative stability of gold-thiolate nanoclusters taking Au3(SMe)3 isomers. We have used normalized mean absolute error (NMAE) analysis as a parameter to compare the results with the reference methods - DLPNO-CCSD(T) and RI-SCS-MP2. We have also compared the performance on the thiolate interaction energy of the stable geometries using the results from our benchmark study. One of the promising functional is PBE that shows robust performance for geometry optimization. On the other hand, M06-2X stands out as the proper choice for the relative energies of the clusters. With the selected methods, we have analyzed the gold-sulfur interaction in Au3(SMe)3 and a comparison is made with AuSMe. The bonding analysis has revealed a partial covalency between gold and sulfur atoms in general. On going from AuSMe to Au3(SMe)3, a substantial flow of charge from gold atoms to thiolate ligands as a result of the increase in gold s-d hybridization. As the s-d mixing in Au increases, the main character of Au-S interaction shifts from covalent to ionic. Hence, a covalent-charge-transfer interaction dominates in gold-sulfur bonding and gives rise to a charge-shift bonding.


2022 ◽  
Author(s):  
Chenhuizi Wu ◽  
Jianfeng Sun ◽  
Xiaojing Dong ◽  
Liuyun Cai ◽  
Xinru Deng ◽  
...  

Abstract Background: Variations in foetal growth between populations should not be ignored, and a single universal standard is not appropriate for everyone. Therefore, it is necessary to develop a new ultrasound estimation equation that adapts better to regional population characteristics. The purpose of this study was to create a new equation for ultrasound estimation of foetal weight according to the local population in Chongqing and compare it with representative equations. Methods: This prospective study included data on pregnant women who gave birth to a child at full term in our hospital from December 2016 to November 2019. Foetal ultrasound parameters included biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), and femur diaphysis length (FDL). The foetal weight compensation model was established by using the second-order linear regression model, and then, the foetal weight equation was established by utilizing the multiple reverse elimination regression technique. Last, the absolute error and relative error were used to compare the accuracy of the equations established in this study with representative equations. Results: Through the foetal weight compensation equation, the new equation suitable for Chongqing foetuses was successfully established with the variables of BPD, HC, AC, and FDL. The following foetal weight prediction equation was established in this study: Log 10 (EFW)=3.002741+0.00005944*(BPD^2)+0.00000222*(HC^2)-0.000002078*(AC^2)+0.00004262*(FDL^2)-0.008753*BPD-0.000884*HC+0.003206*AC-0.002894*FDL (BPD: mm; HC: mm; AC: mm; FDL: mm). In the sets established by the 1925 data, the mean absolute error and standard deviation of the estimation error of the new equation were 178.9 g and 140.3 g respectively. In the validation sets established with 300 data points, the mean absolute error and standard deviation of the new equation were 173.08 g and 128.59 g respectively. Compared with representative equations, the mean absolute error and the standard deviation of the new equation were the lowest. The equation established in this study better predicted foetal weight(P<.001). Conclusions: According to the local population characteristics of Chongqing, this study created a foetal weight estimation equation that is more accurate and suitable. This equation is clinically valuable for the monitoring and management of foetal weight.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 433
Author(s):  
Pasquale Lafiosca ◽  
Ip-Shing Fan ◽  
Nicolas P. Avdelidis

The search for dents is a consistent part of the aircraft inspection workload. The engineer is required to find, measure, and report each dent over the aircraft skin. This process is not only hazardous, but also extremely subject to human factors and environmental conditions. This study discusses the feasibility of automated dent scanning via a single-shot triangular stereo Fourier transform algorithm, designed to be compatible with the use of an unmanned aerial vehicle. The original algorithm is modified introducing two main contributions. First, the automatic estimation of the pass-band filter removes the user interaction in the phase filtering process. Secondly, the employment of a virtual reference plane reduces unwrapping errors, leading to improved accuracy independently of the chosen unwrapping algorithm. Static experiments reached a mean absolute error of ∼0.1 mm at a distance of 60 cm, while dynamic experiments showed ∼0.3 mm at a distance of 120 cm. On average, the mean absolute error decreased by ∼34%, proving the validity of the proposed single-shot 3D reconstruction algorithm and suggesting its applicability for future automated dent inspections.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 88
Author(s):  
Wei He ◽  
Taisong Xiong ◽  
Hao Wang ◽  
Jianxin He ◽  
Xinyue Ren ◽  
...  

Precipitation nowcasting is extremely important in disaster prevention and mitigation, and can improve the quality of meteorological forecasts. In recent years, deep learning-based spatiotemporal sequence prediction models have been widely used in precipitation nowcasting, obtaining better prediction results than numerical weather prediction models and traditional radar echo extrapolation results. Because existing deep learning models rarely consider the inherent interactions between the model input data and the previous output, model prediction results do not sufficiently meet the actual forecast requirement. We propose a Modified Convolutional Gated Recurrent Unit (M-ConvGRU) model that performs convolution operations on the input data and previous output of a GRU network. Moreover, this adopts an encoder–forecaster structure to better capture the characteristics of spatiotemporal correlation in radar echo maps. The results of multiple experiments demonstrate the effectiveness of the proposed model. The balanced mean absolute error (B-MAE) and balanced mean squared error (B-MSE) of M-ConvGRU are slightly lower than Convolutional Long Short-Term Memory (ConvLSTM), but the mean absolute error (MAE) and mean squared error (MSE) of M-ConvGRU are 6.29% and 10.25% lower than ConvLSTM, and the prediction accuracy and prediction performance for strong echo regions were also improved.


2022 ◽  
Vol 72 (1) ◽  
pp. 49-55
Author(s):  
Biji Nair ◽  
S. Mary Saira Bhanu

Fog computing architecture competent to support the mission-oriented network-centric warfare provides the framework for a tactical cloud in this work. The tactical cloud becomes situation-aware of the war from the information relayed by fog nodes (FNs) on the battlefield. This work aims to sustain the network of FNs by maintaining the operational efficiency of the FNs on the battlefield at the tactical edge. The proposed solution monitors and predicts the likely overloading of an FN using the long short-term memory model through a buddy FN at the fog server (FS). This paper also proposes randomised task scheduling (RTS) algorithm to avert the likely overloading of an FN by pre-empting tasks from the FN and scheduling them to another FN. The experimental results demonstrate that RTS with linear complexity has a schedulability measure 8% - 26% higher than that of other base scheduling algorithms. The results show that the LSTM model has low mean absolute error compared to other time-series forecasting models.


Author(s):  
Maraza-Quispe Benjamín ◽  
◽  
Enrique Damián Valderrama-Chauca ◽  
Lenin Henry Cari-Mogrovejo ◽  
Jorge Milton Apaza-Huanca ◽  
...  

The present research aims to implement a predictive model in the KNIME platform to analyze and compare the prediction of academic performance using data from a Learning Management System (LMS), identifying students at academic risk in order to generate timely and timely interventions. The CRISP-DM methodology was used, structured in six phases: Problem analysis, data analysis, data understanding, data preparation, modeling, evaluation and implementation. Based on the analysis of online learning behavior through 22 behavioral indicators observed in the LMS of the Faculty of Educational Sciences of the National University of San Agustin. These indicators are distributed in five dimensions: Academic Performance, Access, Homework, Social Aspects and Quizzes. The model has been implemented in the KNIME platform using the Simple Regression Tree Learner training algorithm. The total population consists of 30,000 student records from which a sample of 1,000 records has been taken by simple random sampling. The accuracy of the model for early prediction of students' academic performance is evaluated, the 22 observed behavioral indicators are compared with the means of academic performance in three courses. The prediction results of the implemented model are satisfactory where the mean absolute error compared to the mean of the first course was 3. 813 and with an accuracy of 89.7%, the mean absolute error compared to the mean of the second course was 2.809 with an accuracy of 94.2% and the mean absolute error compared to the mean of the third course was 2.779 with an accuracy of 93.8%. These results demonstrate that the proposed model can be used to predict students' future academic performance from an LMS data set.


Author(s):  
Marina de P. Moura ◽  
Alfredo Ribeiro Neto ◽  
Fábio A. da Costa

ABSTRACT Reservoirs are the primary source of water supply in the semiarid region of Pernambuco state, Brazil, because of the constant water scarcity affecting this region. Knowledge of the amount of water available is essential for the effective management of water resources. The volume of water stored in the reservoirs is calculated using the depth-area-volume relationship. However, in most reservoirs in the semiarid region, this relationship is currently out of date. Therefore, the objective of this study was to explore the potential and limitations of the application of the ISODATA unsupervised classification method to calculate the depth-area-volume relationships of reservoirs in the semiarid region of Pernambuco, Brazil. The application of the ISODATA method was evaluated in three reservoirs in the state of Pernambuco, i.e., Poço da Cruz, Barra do Juá, and Jucazinho. The results were compared with the updated curves of reservoirs obtained from bathymetry and recent LiDAR surveys. The ISODATA method presented satisfactory results for the three reservoirs analyzed. The mean absolute error of the volume in Poço da Cruz and Barra do Juá was lower than 1% of the maximum capacity. The use of the ISODATA method meant that the surface area underestimation tendency in the Poço da Cruz reservoir was less than when spectral indices were used.


2022 ◽  
Vol 15 (2) ◽  
Author(s):  
Mahdi Sedighkia ◽  
Bithin Datta ◽  
Asghar Abdoli

Abstract  The present study proposes a multipurpose reservoir operation optimization for mitigating impact of rice fields’ contamination on the downstream river ecosystem. The developed model was applied in the Tajan River basin in Mazandaran Province, Iran, in which the rice is the main crop. We used soil and water assessment tool (SWAT) to simulate inflow of the reservoir and nitrate load at downstream river reach. Nash–Sutcliffe model efficiency coefficient was used to measure the robustness of SWAT. NSE indicated that SWAT is acceptable to simulate nitrate load of the rice fields. The results of SWAT was applied in the structure of a multipurpose reservoir operation optimization in which three metaheuristic algorithms including differential evolution algorithm, particle swarm optimization and biogeography-based algorithm were utilized in the optimization process. Reliability index, mean absolute error and failure index were used to measure the robustness of the optimization algorithms. Fuzzy Technique for Order of Preference by Similarity to Ideal Solution was utilized to select the best algorithm. Based on results, particle swarm optimization is the best method to optimize reservoir operation in the case study. The reliability index and mean absolute error for water supply are 0.6 and 5 million cubic meters, respectively. Furthermore, the failure index of contamination is 0.027. Hence, it could be concluded that the proposed optimization system is reliable and robust to mitigate losses and nitrate contamination simultaneously. However, its performance is not perfect for minimizing impact of contamination in all the simulated months.


Sign in / Sign up

Export Citation Format

Share Document