scholarly journals Quadratic exact-size and linear approximate-size random generation of planar graphs

2005 ◽  
Vol DMTCS Proceedings vol. AD,... (Proceedings) ◽  
Author(s):  
Eric Fusy

International audience This extended abstract introduces a new algorithm for the random generation of labelled planar graphs. Its principles rely on Boltzmann samplers as recently developed by Duchon, Flajolet, Louchard, and Schaeffer. It combines the Boltzmann framework, a judicious use of rejection, a new combinatorial bijection found by Fusy, Poulalhon and Schaeffer, as well as a precise analytic description of the generating functions counting planar graphs, which was recently obtained by Giménez and Noy. This gives rise to an extremely efficient algorithm for the random generation of planar graphs. There is a preprocessing step of some fixed small cost. Then, for each generation, the time complexity is quadratic for exact-size uniform sampling and linear for approximate-size sampling. This greatly improves on the best previously known time complexity for exact-size uniform sampling of planar graphs with $n$ vertices, which was a little over $\mathcal{O}(n^7)$.

2008 ◽  
Vol DMTCS Proceedings vol. AI,... (Proceedings) ◽  
Author(s):  
Michael Drmota ◽  
Omer Gimenez ◽  
Marc Noy

International audience We prove that for each $k \geq 0$, the probability that a root vertex in a random planar graph has degree $k$ tends to a computable constant $d_k$, and moreover that $\sum_k d_k =1$. The proof uses the tools developed by Gimènez and Noy in their solution to the problem of the asymptotic enumeration of planar graphs, and is based on a detailed analysis of the generating functions involved in counting planar graphs. However, in order to keep track of the degree of the root, new technical difficulties arise. We obtain explicit, although quite involved expressions, for the coefficients in the singular expansions of interest, which allow us to use transfer theorems in order to get an explicit expression for the probability generating function $p(w)=\sum_k d_k w^k$. From the explicit expression for $p(w)$ we can compute the $d_k$ to any degree of accuracy, and derive asymptotic estimates for large values of $k$.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Michel Nguyên Thê

International audience This paper gives a survey of the limit distributions of the areas of different types of random walks, namely Dyck paths, bilateral Dyck paths, meanders, and Bernoulli random walks, using the technology of generating functions only.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Hoda Bidkhori

International audience In this paper we study finite Eulerian posets which are binomial or Sheffer. These important classes of posets are related to the theory of generating functions and to geometry. The results of this paper are organized as follows: (1) We completely determine the structure of Eulerian binomial posets and, as a conclusion, we are able to classify factorial functions of Eulerian binomial posets; (2) We give an almost complete classification of factorial functions of Eulerian Sheffer posets by dividing the original question into several cases; (3) In most cases above, we completely determine the structure of Eulerian Sheffer posets, a result stronger than just classifying factorial functions of these Eulerian Sheffer posets. We also study Eulerian triangular posets. This paper answers questions posed by R. Ehrenborg and M. Readdy. This research is also motivated by the work of R. Stanley about recognizing the \emphboolean lattice by looking at smaller intervals. Nous étudions les ensembles partiellement ordonnés finis (EPO) qui sont soit binomiaux soit de type Sheffer (deux notions reliées aux séries génératrices et à la géométrie). Nos résultats sont les suivants: (1) nous déterminons la structure des EPO Euleriens et binomiaux; nous classifions ainsi les fonctions factorielles de tous ces EPO; (2) nous donnons une classification presque complète des fonctions factorielles des EPO Euleriens de type Sheffer; (3) dans la plupart de ces cas, nous déterminons complètement la structure des EPO Euleriens et Sheffer, ce qui est plus fort que classifier leurs fonctions factorielles. Nous étudions aussi les EPO Euleriens triangulaires. Cet article répond à des questions de R. Ehrenborg and M. Readdy. Il est aussi motivé par le travail de R. Stanley sur la reconnaissance du treillis booléen via l'étude des petits intervalles.


10.29007/x3qf ◽  
2019 ◽  
Author(s):  
Sumonta Ghosh ◽  
Prakhar Pogde ◽  
Narayan C. Debnath ◽  
Anita Pal

L(h,k) Labeling in graph came into existence as a solution to frequency assignment problem. To reduce interference a frequency in the form of non negative integers is assigned to each radio or TV transmitters located at various places. After L(h,k) labeling, L(h,k, j) labeling is introduced to reduce noise in the communication network. We investigated the graph obtained by Cartesian Product betweenCompleteBipartiteGraphwithPathandCycle,i. e.,Km,n×Pr andKm,n×Cr byapplying L(3,2,1)Labeling. The L(3,2,1) Labeling of a graph G is the difference between the highest and the lowest labels used in L(3,2,1) and is denoted by λ3,2,1(G) In this paper we have designed three suitable algorithms to label the graphs Km,n × Pr and Km,n × Cr . We have also analyzed the time complexity of each algorithm with illustration.


2011 ◽  
Vol 21 (07) ◽  
pp. 1217-1235 ◽  
Author(s):  
VÍCTOR BLANCO ◽  
PEDRO A. GARCÍA-SÁNCHEZ ◽  
JUSTO PUERTO

This paper presents a new methodology to compute the number of numerical semigroups of given genus or Frobenius number. We apply generating function tools to the bounded polyhedron that classifies the semigroups with given genus (or Frobenius number) and multiplicity. First, we give theoretical results about the polynomial-time complexity of counting these semigroups. We also illustrate the methodology analyzing the cases of multiplicity 3 and 4 where some formulas for the number of numerical semigroups for any genus and Frobenius number are obtained.


Author(s):  
Sanjay Ram ◽  
Somnath Pal

There are two approaches for classification of chemical reactions: Model-Driven and Data-Driven. In this paper, the authors develop an efficient algorithm based on a model-driven approach developed by Ugi and co-workers for classification of chemical reactions. The authors’ algorithm takes reaction matrix of a chemical reaction as input and generates its appropriate class as output. Reaction matrices being symmetric, matrix implementation of Ugi’s scheme using upper/lower tri-angular matrix is of O(n2) in terms of space complexity. Time complexity of similar matrix implementation is O(n4), both in worst case as well as in average case. The proposed algorithm uses two fixed size look-up tables in a novel way and requires constant space complexity. Time complexity both in worst and average cases of the algorithm is linear.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 311 ◽  
Author(s):  
Mubasher Umer ◽  
Umar Hayat ◽  
Fazal Abbas ◽  
Anurag Agarwal ◽  
Petko Kitanov

In this paper, we consider the eigenproblems for Latin squares in a bipartite min-max-plus system. The focus is upon developing a new algorithm to compute the eigenvalue and eigenvectors (trivial and non-trivial) for Latin squares in a bipartite min-max-plus system. We illustrate the algorithm using some examples. The proposed algorithm is implemented in MATLAB, using max-plus algebra toolbox. Computationally speaking, our algorithm has a clear advantage over the power algorithm presented by Subiono and van der Woude. Because our algorithm takes 0 . 088783 sec to solve the eigenvalue problem for Latin square presented in Example 2, while the compared one takes 1 . 718662 sec for the same problem. Furthermore, a time complexity comparison is presented, which reveals that the proposed algorithm is less time consuming when compared with some of the existing algorithms.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Kevin Dilks ◽  
T. Kyle Petersen ◽  
John R. Stembridge

International audience Let $W \ltimes L$ be an irreducible affine Weyl group with Coxeter complex $\Sigma$, where $W$ denotes the associated finite Weyl group and $L$ the translation subgroup. The Steinberg torus is the Boolean cell complex obtained by taking the quotient of $\Sigma$ by the lattice $L$. We show that the ordinary and flag $h$-polynomials of the Steinberg torus (with the empty face deleted) are generating functions over $W$ for a descent-like statistic first studied by Cellini. We also show that the ordinary $h$-polynomial has a nonnegative $\gamma$-vector, and hence, symmetric and unimodal coefficients. In the classical cases, we also provide expansions, identities, and generating functions for the $h$-polynomials of Steinberg tori. Nous considérons un groupe de Weyl affine irréductible $W \ltimes L$ avec complexe de Coxeter $\Sigma$, où $W$ désigne le groupe de Weyl fini associé et $L$ le sous-groupe des translations. Le tore de Steinberg est le complexe cellulaire Booléen obtenu comme le quotient de $\Sigma$ par $L$. Nous montrons que les $h$-polynômes, ordinaires et de drapeaux, du tore de Steinberg (sans la face vide) sont des fonctions génératrices sur $W$ pour une statistique de type descente, étudiée en premier lieu par Cellini. Nous montrons également qu'un $h$-polynôme ordinaire possède un $\gamma$-vecteur positif, et par conséquent, a des coefficients symétriques et unimodaux. Dans les cas classiques, nous donnons également des développements, des identités et des fonctions génératrices pour les $h$-polynômes des tores de Steinberg.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Miles Eli Jones ◽  
Luc Lapointe

International audience The Schur functions in superspace $s_\Lambda$ and $\overline{s}_\Lambda$ are the limits $q=t= 0$ and $q=t=\infty$ respectively of the Macdonald polynomials in superspace. We present the elementary properties of the bases $s_\Lambda$ and $\overline{s}_\Lambda$ (which happen to be essentially dual) such as Pieri rules, dualities, monomial expansions, tableaux generating functions, and Cauchy identities. Les fonctions de Schur dans le superespace $s_\Lambda$ et $\overline{s}_\Lambda$ sont les limites $q=t= 0$ et $q=t=\infty$ respectivement des polynômes de Macdonald dans le superespace. Nous présentons les propriétés élémentaires des bases $s_\Lambda$ et $\overline{s}_\Lambda$ (qui sont essentiellement duales l'une de l'autre) tels que les règles de Pieri, la dualité, le développement en fonctions monomiales, les fonctions génératrices de tableaux et les identités de Cauchy.


Sign in / Sign up

Export Citation Format

Share Document