scholarly journals Local chromatic number and topology

2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Gábor Simonyi ◽  
Gábor Tardos

International audience The local chromatic number of a graph, introduced by Erdős et al., is the minimum number of colors that must appear in the closed neighborhood of some vertex in any proper coloring of the graph. This talk would like to survey some of our recent results on this parameter. We give a lower bound for the local chromatic number in terms of the lower bound of the chromatic number provided by the topological method introduced by Lovász. We show that this bound is tight in many cases. In particular, we determine the local chromatic number of certain odd chromatic Schrijver graphs and generalized Mycielski graphs. We further elaborate on the case of $4$-chromatic graphs and, in particular, on surface quadrangulations.

2003 ◽  
Vol Vol. 6 no. 1 ◽  
Author(s):  
Brice Effantin ◽  
Hamamache Kheddouci

International audience The b-chromatic number of a graph G is defined as the maximum number k of colors that can be used to color the vertices of G, such that we obtain a proper coloring and each color i, with 1 ≤ i≤ k, has at least one representant x_i adjacent to a vertex of every color j, 1 ≤ j ≠ i ≤ k. In this paper, we discuss the b-chromatic number of some power graphs. We give the exact value of the b-chromatic number of power paths and power complete binary trees, and we bound the b-chromatic number of power cycles.


2021 ◽  
Vol 27 (2) ◽  
pp. 191-200
Author(s):  
K. Kalaiselvi ◽  
◽  
N. Mohanapriya ◽  
J. Vernold Vivin ◽  
◽  
...  

An r-dynamic coloring of a graph G is a proper coloring of G such that every vertex in V(G) has neighbors in at least $\min\{d(v),r\}$ different color classes. The r-dynamic chromatic number of graph G denoted as $\chi_r (G)$, is the least k such that G has a coloring. In this paper we obtain the r-dynamic chromatic number of the central graph, middle graph, total graph, line graph, para-line graph and sub-division graph of the comb graph $P_n\odot K_1$ denoted by $C(P_n\odot K_1), M(P_n\odot K_1), T(P_n\odot K_1), L(P_n\odot K_1), P(P_n\odot K_1)$ and $S(P_n\odot K_1)$ respectively by finding the upper bound and lower bound for the r-dynamic chromatic number of the Comb graph.


Author(s):  
A. Mohammed Abid ◽  
T. R. Ramesh Rao

A strict strong coloring of a graph [Formula: see text] is a proper coloring of [Formula: see text] in which every vertex of the graph is adjacent to every vertex of some color class. The minimum number of colors required for a strict strong coloring of [Formula: see text] is called the strict strong chromatic number of [Formula: see text] and is denoted by [Formula: see text]. In this paper, we characterize the results on strict strong coloring of Mycielskian graphs and iterated Mycielskian graphs.


2008 ◽  
Vol Vol. 10 no. 3 ◽  
Author(s):  
Cyril Gavoille ◽  
Nicolas Hanusse

International audience In this paper we show an information-theoretic lower bound of kn - o(kn) on the minimum number of bits to represent an unlabeled simple connected n-node graph of pagenumber k. This has to be compared with the efficient encoding scheme of Munro and Raman of 2kn + 2m + o(kn+m) bits (m the number of edges), that is 4kn + 2n + o(kn) bits in the worst-case. For m-edge graphs of pagenumber k (with multi-edges and loops), we propose a 2mlog2k + O(m) bits encoding improving the best previous upper bound of Munro and Raman whenever m ≤ 1 / 2kn/log2 k. Actually our scheme applies to k-page embedding containing multi-edge and loops. Moreover, with an auxiliary table of o(m log k) bits, our coding supports (1) the computation of the degree of a node in constant time, (2) adjacency queries with O(logk) queries of type rank, select and match, that is in O(logk *minlogk / loglogm, loglogk) time and (3) the access to δ neighbors in O(δ) runs of select, rank or match;.


10.37236/3573 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Frédéric Meunier

Using a $\mathbb{Z}_q$-generalization of a theorem of Ky Fan, we extend to Kneser hypergraphs a theorem of Simonyi and Tardos that ensures the existence of multicolored complete bipartite graphs in any proper coloring of a Kneser graph. It allows to derive a lower bound for the local chromatic number of Kneser hypergraphs (using a natural definition of what can be the local chromatic number of a uniform hypergraph).


2020 ◽  
Vol 2020 ◽  
pp. 1-4
Author(s):  
Ramy Shaheen ◽  
Ziad Kanaya ◽  
Khaled Alshehada

Let G = V , E be a graph, and two players Alice and Bob alternate turns coloring the vertices of the graph G a proper coloring where no two adjacent vertices are signed with the same color. Alice's goal is to color the set of vertices using the minimum number of colors, which is called game chromatic number and is denoted by χ g G , while Bob's goal is to prevent Alice's goal. In this paper, we investigate the game chromatic number χ g G of Generalized Petersen Graphs G P n , k for k ≥ 3 and arbitrary n , n -Crossed Prism Graph, and Jahangir Graph J n , m .


2015 ◽  
Vol 07 (04) ◽  
pp. 1550043 ◽  
Author(s):  
B. S. Panda ◽  
Arti Pandey

In a graph [Formula: see text], a vertex [Formula: see text] dominates a vertex [Formula: see text] if either [Formula: see text] or [Formula: see text] is adjacent to [Formula: see text]. A subset of vertex set [Formula: see text] that dominates all the vertices of [Formula: see text] is called a dominating set of graph [Formula: see text]. The minimum cardinality of a dominating set of [Formula: see text] is called the domination number of [Formula: see text] and is denoted by [Formula: see text]. A proper coloring of a graph [Formula: see text] is an assignment of colors to the vertices of [Formula: see text] such that any two adjacent vertices get different colors. The minimum number of colors required for a proper coloring of [Formula: see text] is called the chromatic number of [Formula: see text] and is denoted by [Formula: see text]. A dominator coloring of a graph [Formula: see text] is a proper coloring of the vertices of [Formula: see text] such that every vertex dominates all the vertices of at least one color class. The minimum number of colors required for a dominator coloring of [Formula: see text] is called the dominator chromatic number of [Formula: see text] and is denoted by [Formula: see text]. In this paper, we study the dominator chromatic number for the proper interval graphs and block graphs. We show that every proper interval graph [Formula: see text] satisfies [Formula: see text], and these bounds are sharp. For a block graph [Formula: see text], where one of the end block is of maximum size, we show that [Formula: see text]. We also characterize the block graphs with an end block of maximum size and attaining the lower bound.


2012 ◽  
Vol 13 (03n04) ◽  
pp. 1250011 ◽  
Author(s):  
GEORGE QI ◽  
SHENGHAO WANG ◽  
WEIZHEN GU

The chromatic number of a graph G, denoted χ(G) is the minimum number of colors needed to color vertices of G so that no two adjacent vertices share the same color. A functigraph over a given graph is obtained as follows: Let G' be a disjoint copy of a given G and f be a function f : V(G) → V(G'). The functigraph over G, denoted by C(G, f), is the graph with V(C(G, f)) = V(G) ∪ V(G') and E(C(G, f)) = E(G) ∪ E(G') ∪ {uv : u ∈ V(G), v ∈ V(G'), v = f(u)}. Recently, Chen et al. proved that [Formula: see text]. In this paper, we first provide sufficient conditions on functions f to reach the lower bound for any graph. We then study the attainability of the chromatic numbers of functigraphs. Finally, we extend the definition of a functigraph in different ways and then investigate the bounds of chromatic numbers of such graphs.


10.37236/513 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Sebastian M. Cioabă ◽  
Michael Tait

The chromatic number $\chi(G)$ of a graph $G$ is the minimum number of colors in a proper coloring of the vertices of $G$. The biclique partition number ${\rm bp}(G)$ is the minimum number of complete bipartite subgraphs whose edges partition the edge-set of $G$. The Rank-Coloring Conjecture (formulated by van Nuffelen in 1976) states that $\chi(G)\leq {\rm rank}(A(G))$, where ${\rm rank}(A(G))$ is the rank of the adjacency matrix of $G$. This was disproved in 1989 by Alon and Seymour. In 1991, Alon, Saks, and Seymour conjectured that $\chi(G)\leq {\rm bp}(G)+1$ for any graph $G$. This was recently disproved by Huang and Sudakov. These conjectures are also related to interesting problems in computational complexity. In this paper, we construct new infinite families of counterexamples to both the Alon-Saks-Seymour Conjecture and the Rank-Coloring Conjecture. Our construction is a generalization of similar work by Razborov, and Huang and Sudakov.


Author(s):  
R. Rangarajan ◽  
David. A. Kalarkop

Global dominator coloring of the graph [Formula: see text] is the proper coloring of [Formula: see text] such that every vertex of [Formula: see text] dominates atleast one color class as well as anti-dominates atleast one color class. The minimum number of colors required for global dominator coloring of [Formula: see text] is called global dominator chromatic number of [Formula: see text] denoted by [Formula: see text]. In this paper, we characterize trees [Formula: see text] of order [Formula: see text] [Formula: see text] such that [Formula: see text] and also establish a strict upper bound for [Formula: see text] for a tree of even order [Formula: see text] [Formula: see text]. We construct some family of graphs [Formula: see text] with [Formula: see text] and prove some results on [Formula: see text]-partitions of [Formula: see text] when [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document