A note on global dominator coloring of graphs

Author(s):  
R. Rangarajan ◽  
David. A. Kalarkop

Global dominator coloring of the graph [Formula: see text] is the proper coloring of [Formula: see text] such that every vertex of [Formula: see text] dominates atleast one color class as well as anti-dominates atleast one color class. The minimum number of colors required for global dominator coloring of [Formula: see text] is called global dominator chromatic number of [Formula: see text] denoted by [Formula: see text]. In this paper, we characterize trees [Formula: see text] of order [Formula: see text] [Formula: see text] such that [Formula: see text] and also establish a strict upper bound for [Formula: see text] for a tree of even order [Formula: see text] [Formula: see text]. We construct some family of graphs [Formula: see text] with [Formula: see text] and prove some results on [Formula: see text]-partitions of [Formula: see text] when [Formula: see text].

Let G = (V, E) be a finite, connected, undirected with no loops, multiple edges graph. Then the power dominator coloring of G is a proper coloring of G, such that each vertex of G power dominates every vertex of some color class. The minimum number of color classes in a power dominator coloring of the graph, is the power dominator chromatic number . Here we study the power dominator chromatic number for some special graphs such as Bull Graph, Star Graph, Wheel Graph, Helm graph with the help of induction method and Fan Graph. Suitable examples are provided to exemplify the results.


2019 ◽  
Vol 11 (06) ◽  
pp. 1950066
Author(s):  
S. Arumugam ◽  
K. Raja Chandrasekar

A dominator coloring (respectively, total dominator coloring) of a graph [Formula: see text] is a proper coloring [Formula: see text] of [Formula: see text] such that each closed neighborhood (respectively, open neighborhood) of every vertex of [Formula: see text] contains a color class of [Formula: see text] The minimum number of colors required for a dominator coloring (respectively, total dominator coloring) of [Formula: see text] is called the dominator chromatic number (respectively, total dominator chromatic number) of [Formula: see text] and is denoted by [Formula: see text] (respectively, [Formula: see text]). In this paper, we prove that the dominator coloring problem and the total dominator coloring problem are solvable in linear time for trestled graphs.


Author(s):  
Soumia AIOULA ◽  
Mustapha CHELLALI ◽  
Noureddine Ikhlef-Eschouf

A dominator coloring is a proper coloring of the vertices of a graph such that each vertex of the graph dominates all vertices of at least one color class (possibly its own class). The dominator chromatic number of a graph G is the minimum number of color classes in a dominator coloring of G. In this paper, we determine the exact value of the dominator chromatic number of a subclass of forests which we call, generalized caterpillars forest, where every vertex of degree at least three is a support vertex.


Author(s):  
A. Mohammed Abid ◽  
T. R. Ramesh Rao

A strict strong coloring of a graph [Formula: see text] is a proper coloring of [Formula: see text] in which every vertex of the graph is adjacent to every vertex of some color class. The minimum number of colors required for a strict strong coloring of [Formula: see text] is called the strict strong chromatic number of [Formula: see text] and is denoted by [Formula: see text]. In this paper, we characterize the results on strict strong coloring of Mycielskian graphs and iterated Mycielskian graphs.


2015 ◽  
Vol 07 (04) ◽  
pp. 1550043 ◽  
Author(s):  
B. S. Panda ◽  
Arti Pandey

In a graph [Formula: see text], a vertex [Formula: see text] dominates a vertex [Formula: see text] if either [Formula: see text] or [Formula: see text] is adjacent to [Formula: see text]. A subset of vertex set [Formula: see text] that dominates all the vertices of [Formula: see text] is called a dominating set of graph [Formula: see text]. The minimum cardinality of a dominating set of [Formula: see text] is called the domination number of [Formula: see text] and is denoted by [Formula: see text]. A proper coloring of a graph [Formula: see text] is an assignment of colors to the vertices of [Formula: see text] such that any two adjacent vertices get different colors. The minimum number of colors required for a proper coloring of [Formula: see text] is called the chromatic number of [Formula: see text] and is denoted by [Formula: see text]. A dominator coloring of a graph [Formula: see text] is a proper coloring of the vertices of [Formula: see text] such that every vertex dominates all the vertices of at least one color class. The minimum number of colors required for a dominator coloring of [Formula: see text] is called the dominator chromatic number of [Formula: see text] and is denoted by [Formula: see text]. In this paper, we study the dominator chromatic number for the proper interval graphs and block graphs. We show that every proper interval graph [Formula: see text] satisfies [Formula: see text], and these bounds are sharp. For a block graph [Formula: see text], where one of the end block is of maximum size, we show that [Formula: see text]. We also characterize the block graphs with an end block of maximum size and attaining the lower bound.


2011 ◽  
Vol 10 (1) ◽  
pp. 52-62
Author(s):  
K Kavitha ◽  
N G David ◽  
N. Selvi

A proper graph coloring is defined as coloring the nodes of a graph with the minimum number of colors without any two adjacent nodes having the same color.  Dominator coloring of G is a proper coloring in which every vertex of G dominates every vertex of at least one color class.  In this paper, new parameters, namely strong split and non-split dominator chromatic numbers and block, cycle, path non-split dominator chromatic numbers are introduced.  These parameters are obtained for different classes of graphs and also interesting results are established.


Author(s):  
Fairouz Beggas ◽  
Hamamache Kheddouci ◽  
Walid Marweni

In this paper, we introduce and study a new coloring problem of graphs called the double total dominator coloring. A double total dominator coloring of a graph [Formula: see text] with minimum degree at least 2 is a proper vertex coloring of [Formula: see text] such that each vertex has to dominate at least two color classes. The minimum number of colors among all double total dominator coloring of [Formula: see text] is called the double total dominator chromatic number, denoted by [Formula: see text]. Therefore, we establish the close relationship between the double total dominator chromatic number [Formula: see text] and the double total domination number [Formula: see text]. We prove the NP-completeness of the problem. We also examine the effects on [Formula: see text] when [Formula: see text] is modified by some operations. Finally, we discuss the [Formula: see text] number of square of trees by giving some bounds.


2021 ◽  
Vol 27 (2) ◽  
pp. 191-200
Author(s):  
K. Kalaiselvi ◽  
◽  
N. Mohanapriya ◽  
J. Vernold Vivin ◽  
◽  
...  

An r-dynamic coloring of a graph G is a proper coloring of G such that every vertex in V(G) has neighbors in at least $\min\{d(v),r\}$ different color classes. The r-dynamic chromatic number of graph G denoted as $\chi_r (G)$, is the least k such that G has a coloring. In this paper we obtain the r-dynamic chromatic number of the central graph, middle graph, total graph, line graph, para-line graph and sub-division graph of the comb graph $P_n\odot K_1$ denoted by $C(P_n\odot K_1), M(P_n\odot K_1), T(P_n\odot K_1), L(P_n\odot K_1), P(P_n\odot K_1)$ and $S(P_n\odot K_1)$ respectively by finding the upper bound and lower bound for the r-dynamic chromatic number of the Comb graph.


2012 ◽  
Vol 21 (4) ◽  
pp. 611-622 ◽  
Author(s):  
A. KOSTOCHKA ◽  
M. KUMBHAT ◽  
T. ŁUCZAK

A colouring of the vertices of a hypergraph is called conflict-free if each edge e of contains a vertex whose colour does not repeat in e. The smallest number of colours required for such a colouring is called the conflict-free chromatic number of , and is denoted by χCF(). Pach and Tardos proved that for an (2r − 1)-uniform hypergraph with m edges, χCF() is at most of the order of rm1/r log m, for fixed r and large m. They also raised the question whether a similar upper bound holds for r-uniform hypergraphs. In this paper we show that this is not necessarily the case. Furthermore, we provide lower and upper bounds on the minimum number of edges of an r-uniform simple hypergraph that is not conflict-free k-colourable.


10.37236/7874 ◽  
2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Luis Goddyn ◽  
Kevin Halasz ◽  
E. S. Mahmoodian

The chromatic number of a latin square $L$, denoted $\chi(L)$, is the minimum number of partial transversals needed to cover all of its cells. It has been conjectured that every latin square satisfies $\chi(L) \leq |L|+2$. If true, this would resolve a longstanding conjecture—commonly attributed to Brualdi—that every latin square has a partial transversal of size $|L|-1$. Restricting our attention to Cayley tables of finite groups, we prove two results. First, we resolve the chromatic number question for Cayley tables of finite Abelian groups: the Cayley table of an Abelian group $G$ has chromatic number $|G|$ or $|G|+2$, with the latter case occurring if and only if $G$ has nontrivial cyclic Sylow 2-subgroups. Second, we give an upper bound for the chromatic number of Cayley tables of arbitrary finite groups. For $|G|\geq 3$, this improves the best-known general upper bound from $2|G|$ to $\frac{3}{2}|G|$, while yielding an even stronger result in infinitely many cases.


Sign in / Sign up

Export Citation Format

Share Document