scholarly journals Minimal and maximal plateau lengths in Motzkin paths

2007 ◽  
Vol DMTCS Proceedings vol. AH,... (Proceedings) ◽  
Author(s):  
Helmut Prodinger ◽  
Stephan Wagner

International audience The minimal length of a plateau (a sequence of horizontal steps, preceded by an up- and followed by a down-step) in a Motzkin path is known to be of interest in the study of secondary structures which in turn appear in mathematical biology. We will treat this and the related parameters <i> maximal plateau length, horizontal segment </i>and <i>maximal horizontal segment </i>as well as some similar parameters in unary-binary trees by a pure generating functions approach―-Motzkin paths are derived from Dyck paths by a substitution process. Furthermore, we provide a pretty general analytic method to obtain means and limiting distributions for these parameters. It turns out that the maximal plateau and the maximal horizontal segment follow a Gumbel distribution.

2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Michel Nguyên Thê

International audience This paper gives a survey of the limit distributions of the areas of different types of random walks, namely Dyck paths, bilateral Dyck paths, meanders, and Bernoulli random walks, using the technology of generating functions only.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Samuele Giraudo

International audience We introduce a functorial construction which, from a monoid, produces a set-operad. We obtain new (symmetric or not) operads as suboperads or quotients of the operad obtained from the additive monoid. These involve various familiar combinatorial objects: parking functions, packed words, planar rooted trees, generalized Dyck paths, Schröder trees, Motzkin paths, integer compositions, directed animals, etc. We also retrieve some known operads: the magmatic operad, the commutative associative operad, and the diassociative operad.


10.37236/1637 ◽  
2002 ◽  
Vol 9 (1) ◽  
Author(s):  
E. J. Janse van Rensburg ◽  
A. Rechnitzer

In a previous work [26], by considering paths that are partially weighted, the generating function of Dyck paths was shown to possess a type of symmetry, called an exchange relation, derived from the exchange of a portion of the path between weighted and unweighted halves. This relation is particularly useful in solving for the generating functions of certain models of vertex-coloured Dyck paths; this is a directed model of copolymer adsorption, and in a particular case it is possible to find an asymptotic expression for the adsorption critical point of the model as a function of the colouring. In this paper we examine Motzkin path and partially directed walk models of the same adsorbing directed copolymer problem. These problems are an interesting generalisation of previous results since the colouring can be of either the edges, or the vertices, of the paths. We are able to find asymptotic expressions for the adsorption critical point in the Motzkin path model for both edge and vertex colourings, and for the partially directed walk only for edge colourings. The vertex colouring problem in partially directed walks seems to be beyond the scope of the methods of this paper, and remains an open question. In both these cases we first find exchange relations for the generating functions, and use those to find the asymptotic expression for the adsorption critical point.


2015 ◽  
Vol Vol. 17 no. 1 (Combinatorics) ◽  
Author(s):  
Helmut Prodinger ◽  
Stephan Wagner

Combinatorics International audience We provide a rather general asymptotic scheme for combinatorial parameters that asymptotically follow a discrete double-exponential distribution. It is based on analysing generating functions Gh(z) whose dominant singularities converge to a certain value at an exponential rate. This behaviour is typically found by means of a bootstrapping approach. Our scheme is illustrated by a number of classical and new examples, such as the longest run in words or compositions, patterns in Dyck and Motzkin paths, or the maximum degree in planted plane trees.


2008 ◽  
Vol Vol. 10 no. 3 (Analysis of Algorithms) ◽  
Author(s):  
Helmut Prodinger

Analysis of Algorithms International audience For Dyck paths (nonnegative symmetric) random walks, the location of the first maximum within the first sojourn is studied. Generating functions and explicit resp. asymptotic expressions for the average are derived. Related parameters are also discussed.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Mark Dukes ◽  
Yvan Le Borgne

International audience We give a polyomino characterisation of recurrent configurations of the sandpile model on the complete bipartite graph $K_{m,n}$ in which one designated vertex is the sink. We present a bijection from these recurrent configurations to decorated parallelogram polyominoes whose bounding box is a $m×n$ rectangle. Other combinatorial structures appear in special cases of this correspondence: for example bicomposition matrices (a matrix analogue of set partitions), and (2+2)-free posets. A canonical toppling process for recurrent configurations gives rise to a path within the associated parallelogram polyominoes. We define a collection of polynomials that we call $q,t$-Narayana polynomials, the generating functions of the bistatistic $(\mathsf{area ,parabounce} )$ on the set of parallelogram polyominoes, akin to Haglund's $(\mathsf{area ,hagbounce} )$ bistatistic on Dyck paths. In doing so, we have extended a bistatistic of Egge et al. to the set of parallelogram polyominoes. This is one answer to their question concerning extensions to other combinatorial objects. We conjecture the $q,t$-Narayana polynomials to be symmetric and discuss the proofs for numerous special cases. We also show a relationship between the $q,t$-Catalan polynomials and our bistatistic $(\mathsf{area ,parabounce}) $on a subset of parallelogram polyominoes. Pour le modèle du tas de sable sur un graphe $K_m,n$ biparti complet, on donne une description des configurations rècurrentes à l'aide d'une bijection avec des polyominos parallèlogrammes dècorès de rectangle englobant $m×n$. D'autres classes combinatoires apparaissent comme des cas particuliers de cette construction: par exemple les matrices de bicomposition et les ordres partiels évitant le motif (2+2). Un processus d'éboulement canonique des configurations récurrentes se traduit par un chemin bondissant dans le polyomino parallèlogramme associè. Nous définissons une famille de polynômes, baptisée de $q,t$-Narayana, à travers la distribution d'une paire de statistique $(\mathsf{aire, poidscheminbondissant})$ sur les polyominos parallélogrammes similaire à celle de Haglund définissant les polynômes de $q,t$-Catalan sur les chemins de Dyck. Ainsi nous étendons une paire de statistique de Egge et d'autres à l'ensemble des polynominos parallélogrammes. Cela répond à l'une de leur question sur des généralistations à d'autres objets combinatoires. Nous conjecturons que les polynômes de $q,t$-Narayana sont symétriques et discutons des preuves de plusieurs cas particuliers. Nous montrons ègalement une relation avec les polynômes de $q,t$-Catalan en restreignant notre paire de statistique à un sous-ensemble des polyominos parallélogrammes.


2016 ◽  
Vol Vol. 17 no. 3 (Combinatorics) ◽  
Author(s):  
Jean-Luc Baril

International audience We explore the classical pattern avoidance question in the case of irreducible permutations, <i>i.e.</i>, those in which there is no index $i$ such that $\sigma (i+1) - \sigma (i)=1$. The problem is addressed completely in the case of avoiding one or two patterns of length three, and several well known sequences are encountered in the process, such as Catalan, Motzkin, Fibonacci, Tribonacci, Padovan and Binary numbers. Also, we present constructive bijections between the set of Motzkin paths of length $n-1$ and the sets of irreducible permutations of length $n$ (respectively fixed point free irreducible involutions of length $2n$) avoiding a pattern $\alpha$ for $\alpha \in \{132,213,321\}$. This induces two new bijections between the set of Dyck paths and some restricted sets of permutations.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Hoda Bidkhori

International audience In this paper we study finite Eulerian posets which are binomial or Sheffer. These important classes of posets are related to the theory of generating functions and to geometry. The results of this paper are organized as follows: (1) We completely determine the structure of Eulerian binomial posets and, as a conclusion, we are able to classify factorial functions of Eulerian binomial posets; (2) We give an almost complete classification of factorial functions of Eulerian Sheffer posets by dividing the original question into several cases; (3) In most cases above, we completely determine the structure of Eulerian Sheffer posets, a result stronger than just classifying factorial functions of these Eulerian Sheffer posets. We also study Eulerian triangular posets. This paper answers questions posed by R. Ehrenborg and M. Readdy. This research is also motivated by the work of R. Stanley about recognizing the \emphboolean lattice by looking at smaller intervals. Nous étudions les ensembles partiellement ordonnés finis (EPO) qui sont soit binomiaux soit de type Sheffer (deux notions reliées aux séries génératrices et à la géométrie). Nos résultats sont les suivants: (1) nous déterminons la structure des EPO Euleriens et binomiaux; nous classifions ainsi les fonctions factorielles de tous ces EPO; (2) nous donnons une classification presque complète des fonctions factorielles des EPO Euleriens de type Sheffer; (3) dans la plupart de ces cas, nous déterminons complètement la structure des EPO Euleriens et Sheffer, ce qui est plus fort que classifier leurs fonctions factorielles. Nous étudions aussi les EPO Euleriens triangulaires. Cet article répond à des questions de R. Ehrenborg and M. Readdy. Il est aussi motivé par le travail de R. Stanley sur la reconnaissance du treillis booléen via l'étude des petits intervalles.


10.37236/5629 ◽  
2015 ◽  
Vol 22 (4) ◽  
Author(s):  
Michael Albert ◽  
Mathilde Bouvel

The existence of apparently coincidental equalities (also called Wilf-equivalences) between the enumeration sequences or generating functions of various hereditary classes of combinatorial structures has attracted significant interest. We investigate such coincidences among non-crossing matchings and a variety of other Catalan structures including Dyck paths, 231-avoiding permutations and plane forests. In particular we consider principal subclasses defined by not containing an occurrence of a single given structure. An easily computed equivalence relation among structures is described such that if two structures are equivalent then the associated principal subclasses have the same enumeration sequence. We give an asymptotic estimate of the number of equivalence classes of this relation among structures of size $n$ and show that it is exponentially smaller than the $n^{th}$ Catalan number. In other words these "coincidental" equalities are in fact very common among principal subclasses. Our results also allow us to prove in a unified and bijective manner several known Wilf-equivalences from the literature.


10.37236/856 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Denis Chebikin

We study new statistics on permutations that are variations on the descent and the inversion statistics. In particular, we consider the alternating descent set of a permutation $\sigma = \sigma_1\sigma_2\cdots\sigma_n$ defined as the set of indices $i$ such that either $i$ is odd and $\sigma_i > \sigma_{i+1}$, or $i$ is even and $\sigma_i < \sigma_{i+1}$. We show that this statistic is equidistributed with the odd $3$-factor set statistic on permutations $\tilde{\sigma} = \sigma_1\sigma_2\cdots\sigma_{n+1}$ with $\sigma_1=1$, defined to be the set of indices $i$ such that the triple $\sigma_i \sigma_{i+1} \sigma_{i+2}$ forms an odd permutation of size $3$. We then introduce Mahonian inversion statistics corresponding to the two new variations of descents and show that the joint distributions of the resulting descent-inversion pairs are the same, establishing a connection to two classical Mahonian statistics, maj and stat, along the way. We examine the generating functions involving alternating Eulerian polynomials, defined by analogy with the classical Eulerian polynomials $\sum_{\sigma\in\mathcal{S}_n} t^{{\rm des}(\sigma)+1}$ using alternating descents. For the alternating descent set statistic, we define the generating polynomial in two non-commutative variables by analogy with the $ab$-index of the Boolean algebra $B_n$, providing a link to permutations without consecutive descents. By looking at the number of alternating inversions, which we define in the paper, in alternating (down-up) permutations, we obtain a new $q$-analog of the Euler number $E_n$ and show how it emerges in a $q$-analog of an identity expressing $E_n$ as a weighted sum of Dyck paths.


Sign in / Sign up

Export Citation Format

Share Document