scholarly journals Variations on Descents and Inversions in Permutations

10.37236/856 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Denis Chebikin

We study new statistics on permutations that are variations on the descent and the inversion statistics. In particular, we consider the alternating descent set of a permutation $\sigma = \sigma_1\sigma_2\cdots\sigma_n$ defined as the set of indices $i$ such that either $i$ is odd and $\sigma_i > \sigma_{i+1}$, or $i$ is even and $\sigma_i < \sigma_{i+1}$. We show that this statistic is equidistributed with the odd $3$-factor set statistic on permutations $\tilde{\sigma} = \sigma_1\sigma_2\cdots\sigma_{n+1}$ with $\sigma_1=1$, defined to be the set of indices $i$ such that the triple $\sigma_i \sigma_{i+1} \sigma_{i+2}$ forms an odd permutation of size $3$. We then introduce Mahonian inversion statistics corresponding to the two new variations of descents and show that the joint distributions of the resulting descent-inversion pairs are the same, establishing a connection to two classical Mahonian statistics, maj and stat, along the way. We examine the generating functions involving alternating Eulerian polynomials, defined by analogy with the classical Eulerian polynomials $\sum_{\sigma\in\mathcal{S}_n} t^{{\rm des}(\sigma)+1}$ using alternating descents. For the alternating descent set statistic, we define the generating polynomial in two non-commutative variables by analogy with the $ab$-index of the Boolean algebra $B_n$, providing a link to permutations without consecutive descents. By looking at the number of alternating inversions, which we define in the paper, in alternating (down-up) permutations, we obtain a new $q$-analog of the Euler number $E_n$ and show how it emerges in a $q$-analog of an identity expressing $E_n$ as a weighted sum of Dyck paths.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Michel Nguyên Thê

International audience This paper gives a survey of the limit distributions of the areas of different types of random walks, namely Dyck paths, bilateral Dyck paths, meanders, and Bernoulli random walks, using the technology of generating functions only.



10.37236/5629 ◽  
2015 ◽  
Vol 22 (4) ◽  
Author(s):  
Michael Albert ◽  
Mathilde Bouvel

The existence of apparently coincidental equalities (also called Wilf-equivalences) between the enumeration sequences or generating functions of various hereditary classes of combinatorial structures has attracted significant interest. We investigate such coincidences among non-crossing matchings and a variety of other Catalan structures including Dyck paths, 231-avoiding permutations and plane forests. In particular we consider principal subclasses defined by not containing an occurrence of a single given structure. An easily computed equivalence relation among structures is described such that if two structures are equivalent then the associated principal subclasses have the same enumeration sequence. We give an asymptotic estimate of the number of equivalence classes of this relation among structures of size $n$ and show that it is exponentially smaller than the $n^{th}$ Catalan number. In other words these "coincidental" equalities are in fact very common among principal subclasses. Our results also allow us to prove in a unified and bijective manner several known Wilf-equivalences from the literature.



2014 ◽  
Vol 23 (6) ◽  
pp. 1057-1086 ◽  
Author(s):  
PETER J. GRABNER ◽  
ARNOLD KNOPFMACHER ◽  
STEPHAN WAGNER

We consider statistical properties of random integer partitions. In order to compute means, variances and higher moments of various partition statistics, one often has to study generating functions of the form P(x)F(x), where P(x) is the generating function for the number of partitions. In this paper, we show how asymptotic expansions can be obtained in a quasi-automatic way from expansions of F(x) around x = 1, which parallels the classical singularity analysis of Flajolet and Odlyzko in many ways. Numerous examples from the literature, as well as some new statistics, are treated via this methodology. In addition, we show how to compute further terms in the asymptotic expansions of previously studied partition statistics.



2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Jia Huang

International audience By investigating the action of the 0-Hecke algebra on the coinvariant algebra and the complete flag variety, we interpret generating functions counting the permutations with fixed inverse descent set by their inversion number and major index. En étudiant l'action de l'algèbre de 0-Hecke sur l'algèbre coinvariante et la variété de drapeaux complète, nous interprétons les fonctions génératrices qui comptent les permutations avec un ensemble inverse de descentes fixé, selon leur nombre d'inversions et leur "major index''.



Author(s):  
Waseem Khan ◽  
Idrees Ahmad Khan ◽  
Mehmet Acikgoz ◽  
Ugur Duran

In this paper, a new class of q-Hermite based Frobenius type Eulerian polynomials is introduced by means of generating function and series representation. Several fundamental formulas and recurrence relations for these polynomials are derived via different generating methods. Furthermore, diverse correlations including the q-Apostol-Bernoulli polynomials, the q-Apostol-Euler poynoomials, the q-Apostol-Genocchi polynomials and the q-Stirling numbers of the second kind are also established by means of the their generating functions.



10.37236/299 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Jeffrey Remmel ◽  
Manda Riehl

A large number of generating functions for permutation statistics can be obtained by applying homomorphisms to simple symmetric function identities. In particular, a large number of generating functions involving the number of descents of a permutation $\sigma$, $des(\sigma)$, arise in this way. For any given finite set $S$ of positive integers, we develop a method to produce similar generating functions for the set of permutations of the symmetric group $S_n$ whose descent set contains $S$. Our method will be to apply certain homomorphisms to symmetric function identities involving ribbon Schur functions.



10.37236/1637 ◽  
2002 ◽  
Vol 9 (1) ◽  
Author(s):  
E. J. Janse van Rensburg ◽  
A. Rechnitzer

In a previous work [26], by considering paths that are partially weighted, the generating function of Dyck paths was shown to possess a type of symmetry, called an exchange relation, derived from the exchange of a portion of the path between weighted and unweighted halves. This relation is particularly useful in solving for the generating functions of certain models of vertex-coloured Dyck paths; this is a directed model of copolymer adsorption, and in a particular case it is possible to find an asymptotic expression for the adsorption critical point of the model as a function of the colouring. In this paper we examine Motzkin path and partially directed walk models of the same adsorbing directed copolymer problem. These problems are an interesting generalisation of previous results since the colouring can be of either the edges, or the vertices, of the paths. We are able to find asymptotic expressions for the adsorption critical point in the Motzkin path model for both edge and vertex colourings, and for the partially directed walk only for edge colourings. The vertex colouring problem in partially directed walks seems to be beyond the scope of the methods of this paper, and remains an open question. In both these cases we first find exchange relations for the generating functions, and use those to find the asymptotic expression for the adsorption critical point.



2018 ◽  
Vol 12 (2) ◽  
pp. 413-438 ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck

In this paper, we consider statistics on compositions and set partitions represented geometrically as bargraphs. By a water cell, we mean a unit square exterior to a bargraph that lies along a horizontal line between any two squares contained within the area subtended by the bargraph. That is, if a large amount of a liquid were poured onto the bargraph from above and allowed to drain freely, then the water cells are precisely those cells where the liquid would collect. In this paper, we count both compositions and set partitions according to the number of descents and water cells in their bargraph representations and determine generating function formulas for the joint distributions on the respective structures. Comparable generating functions that count non-crossing and non-nesting partitions are also found. Finally, we determine explicit formulas for the sign balance and for the first moment of the water cell statistic on set partitions, providing both algebraic and combinatorial proofs.



Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 962 ◽  
Author(s):  
Yuriy Shablya ◽  
Dmitry Kruchinin ◽  
Vladimir Kruchinin

In this paper, we study the problem of developing new combinatorial generation algorithms. The main purpose of our research is to derive and improve general methods for developing combinatorial generation algorithms. We present basic general methods for solving this task and consider one of these methods, which is based on AND/OR trees. This method is extended by using the mathematical apparatus of the theory of generating functions since it is one of the basic approaches in combinatorics (we propose to use the method of compositae for obtaining explicit expression of the coefficients of generating functions). As a result, we also apply this method and develop new ranking and unranking algorithms for the following combinatorial sets: permutations, permutations with ascents, combinations, Dyck paths with return steps, labeled Dyck paths with ascents on return steps. For each of them, we construct an AND/OR tree structure, find a bijection between the elements of the combinatorial set and the set of variants of the AND/OR tree, and develop algorithms for ranking and unranking the variants of the AND/OR tree.



1973 ◽  
Vol 5 (03) ◽  
pp. 614-631 ◽  
Author(s):  
N. B. Slater ◽  
T. C. T. Kotiah

In a multi-server queueing system in which the customers are of several different types, it is useful to define states which specify the types of customers being served as well as the total number present. Analogies with some problems in statistical mechanics are found fruitful. Certain generating functions are defined in such a way that they satisfy a system of linear equations. Solution of the associated eigenvector problem shows that the steady-state probabilities for states in which all the servers are busy can be represented by a weighted sum of geometric probabilities.



Sign in / Sign up

Export Citation Format

Share Document