scholarly journals On subcritical multi-type branching process in random environment

2008 ◽  
Vol DMTCS Proceedings vol. AI,... (Proceedings) ◽  
Author(s):  
Elena Dyakonova

International audience We investigate a multi-type Galton-Watson process in a random environment generated by a sequence of independent identically distributed random variables. Suppose that the associated random walk constructed by the logarithms of the Perron roots of the reproduction mean matrices has negative mean and assuming some additional conditions, we find the asymptotics of the survival probability at time $n$ as $n \to \infty$.

2006 ◽  
Vol DMTCS Proceedings vol. AG,... (Proceedings) ◽  
Author(s):  
Elena Dyakonova

International audience We study a multi-type branching process in i.i.d. random environment. Assuming that the associated random walk satisfies the Doney-Spitzer condition, we find the asymptotics of the survival probability at time $n$ as $n \to \infty$.


2021 ◽  
Vol 31 (3) ◽  
pp. 207-222
Author(s):  
Vladimir A. Vatutin ◽  
Elena E. Dyakonova

Abstract A multi-type branching process evolving in a random environment generated by a sequence of independent identically distributed random variables is considered. The asymptotics of the survival probability of the process for a long time is found under the assumption that the matrices of the mean values of direct descendants have a common left eigenvector and the increment X of the associated random walk generated by the logarithms of the Perron roots of these matrices satisfies conditions E X < 0 and E XeX > 0.


2008 ◽  
Vol DMTCS Proceedings vol. AI,... (Proceedings) ◽  
Author(s):  
Vladimir Vatutin ◽  
Andreas Kyprianou

International audience Let $Z_n,n=0,1,\ldots,$ be a branching process evolving in the random environment generated by a sequence of iid generating functions $f_0(s),f_1(s),\ldots,$ and let $S_0=0$, $S_k=X_1+ \ldots +X_k,k \geq 1$, be the associated random walk with $X_i=\log f_{i-1}^{\prime}(1), \tau (m,n)$ be the left-most point of minimum of $\{S_k,k \geq 0 \}$ on the interval $[m,n]$, and $T=\min \{ k:Z_k=0\}$. Assuming that the associated random walk satisfies the Doney condition $P(S_n > 0) \to \rho \in (0,1), n \to \infty$, we prove (under the quenched approach) conditional limit theorems, as $n \to \infty$, for the distribution of $Z_{nt}, Z_{\tau (0,nt)}$, and $Z_{\tau (nt,n)}, t \in (0,1)$, given $T=n$. It is shown that the form of the limit distributions essentially depends on the location of $\tau (0,n)$ with respect to the point $nt$.


2021 ◽  
Vol 31 (4) ◽  
pp. 281-291
Author(s):  
Aleksandr V. Shklyaev

Abstract In this first part of the paper we find the asymptotic formulas for the probabilities of large deviations of the sequence defined by the random difference equation Y n+1=A n Y n + B n , where A 1, A 2, … are independent identically distributed random variables and B n may depend on { ( A k , B k ) , 0 ⩽ k < n } $ \{(A_k,B_k),0\leqslant k \lt n\} $ for any n≥1. In the second part of the paper this results are applied to the large deviations of branching processes in a random environment.


1978 ◽  
Vol 10 (1) ◽  
pp. 62-84 ◽  
Author(s):  
J. D. Biggins

In a supercritical branching random walk on Rp, a Galton–Watson process with the additional feature that people have positions, let be the set of positions of the nth-generation people, scaled by the factor n–1. It is shown that when the process survives looks like a convex set for large n. An analogous result is established for an age-dependent branching process in which people also have positions. In certain cases an explicit formula for the asymptotic shape is given.


1978 ◽  
Vol 10 (01) ◽  
pp. 62-84 ◽  
Author(s):  
J. D. Biggins

In a supercritical branching random walk on R p , a Galton–Watson process with the additional feature that people have positions, let be the set of positions of the nth-generation people, scaled by the factor n –1. It is shown that when the process survives looks like a convex set for large n. An analogous result is established for an age-dependent branching process in which people also have positions. In certain cases an explicit formula for the asymptotic shape is given.


1975 ◽  
Vol 12 (02) ◽  
pp. 289-297
Author(s):  
Andrew D. Barbour

LetX(t) be a continuous time Markov process on the integers such that, ifσis a time at whichXmakes a jump,X(σ)– X(σ–) is distributed independently ofX(σ–), and has finite meanμand variance. Letq(j) denote the residence time parameter for the statej.Iftndenotes the time of thenth jump andXn≡X(tb), it is easy to deduce limit theorems forfrom those for sums of independent identically distributed random variables. In this paper, it is shown how, forμ&gt; 0 and for suitableq(·), these theorems can be translated into limit theorems forX(t), by using the continuous mapping theorem.


1978 ◽  
Vol 15 (02) ◽  
pp. 280-291 ◽  
Author(s):  
Peichuen Kao

Let {ξ k : k ≧ 1} be a sequence of independent, identically distributed random variables with E{ξ 1} = μ ≠ 0. Form the random walk {S n : n ≧ 0} by setting S 0, S n = ξ 1 + ξ 2 + ··· + ξ n , n ≧ 1. Define the random function Xn by setting where α is a norming constant. Let N denote the hitting time of the set (–∞, 0] by the random walk. The principal result in this paper is to show (under appropriate conditions on the distribution of ξ 1) that the finite-dimensional distributions of Xn , conditioned on n &lt; N &lt; ∞ converge to those of the Brownian excursion process.


Sign in / Sign up

Export Citation Format

Share Document