scholarly journals q-Enumeration of words by their total variation

2011 ◽  
Vol Vol. 12 no. 3 (Combinatorics) ◽  
Author(s):  
Ligia Loreta Cristea ◽  
Helmut Prodinger

Combinatorics International audience In recent work, Mansour [Discrete Math. Theoret. Computer Science 11, 2009, 173--186] considers the problem of enumerating all words of length n over {1,2,...,k} (where k is a given integer), that have the total variation equal to a given integer m. In the present paper we study various types of random words over the infinite alphabet ℕ, where the letters have geometric probabilities. We are interested in the probabilities of words of given type to have a given total variation.

Author(s):  
Stefano Massei

AbstractVarious applications in numerical linear algebra and computer science are related to selecting the $$r\times r$$ r × r submatrix of maximum volume contained in a given matrix $$A\in \mathbb R^{n\times n}$$ A ∈ R n × n . We propose a new greedy algorithm of cost $$\mathcal O(n)$$ O ( n ) , for the case A symmetric positive semidefinite (SPSD) and we discuss its extension to related optimization problems such as the maximum ratio of volumes. In the second part of the paper we prove that any SPSD matrix admits a cross approximation built on a principal submatrix whose approximation error is bounded by $$(r+1)$$ ( r + 1 ) times the error of the best rank r approximation in the nuclear norm. In the spirit of recent work by Cortinovis and Kressner we derive some deterministic algorithms, which are capable to retrieve a quasi optimal cross approximation with cost $$\mathcal O(n^3)$$ O ( n 3 ) .


2014 ◽  
Vol Vol. 16 no. 1 (Graph Theory) ◽  
Author(s):  
Jiyun Guo ◽  
Jianhua Yin

Graph Theory International audience Let (a1,a2,\textellipsis,an) and (b1,b2,\textellipsis,bn) be two sequences of nonnegative integers satisfying the condition that b1>=b2>=...>=bn, ai<= bi for i=1,2,\textellipsis,n and ai+bi>=ai+1+bi+1 for i=1,2,\textellipsis, n-1. In this paper, we give two different conditions, one of which is sufficient and the other one necessary, for the sequences (a1,a2,\textellipsis,an) and (b1,b2,\textellipsis,bn) such that for every (c1,c2,\textellipsis,cn) with ai<=ci<=bi for i=1,2,\textellipsis,n and &#x2211;&limits;i=1n ci=0 (mod 2), there exists a simple graph G with vertices v1,v2,\textellipsis,vn such that dG(vi)=ci for i=1,2,\textellipsis,n. This is a variant of Niessen\textquoterights problem on degree sequences of graphs (Discrete Math., 191 (1998), 247&#x2013;253).


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Sara Billey ◽  
Matjaz Konvalinka ◽  
Frderick Matsen IV

International audience Tanglegrams are a class of graphs arising in computer science and in biological research on cospeciation and coevolution. They are formed by identifying the leaves of two rooted binary trees. The embedding of the trees in the plane is irrelevant for this application. We give an explicit formula to count the number of distinct binary rooted tanglegrams with n matched leaves, along with a simple asymptotic formula and an algorithm for choosing a tanglegram uniformly at random. The enumeration formula is then extended to count the number of tangled chains of binary trees of any length. This work gives a new formula for the number of binary trees with n leaves. Several open problems and conjectures are included along with pointers to several followup articles that have already appeared.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Lukas Riegler

International audience In a recent work, the combinatorial interpretation of the polynomial $\alpha (n; k_1,k_2,\ldots,k_n)$ counting the number of Monotone Triangles with bottom row $k_1 < k_2 < ⋯< k_n$ was extended to weakly decreasing sequences $k_1 ≥k_2 ≥⋯≥k_n$. In this case the evaluation of the polynomial is equal to a signed enumeration of objects called Decreasing Monotone Triangles. In this paper we define Generalized Monotone Triangles – a joint generalization of both ordinary Monotone Triangles and Decreasing Monotone Triangles. As main result of the paper we prove that the evaluation of $\alpha (n; k_1,k_2,\ldots,k_n)$ at arbitrary $(k_1,k_2,\ldots,k_n) ∈ \mathbb{Z}^n$ is a signed enumeration of Generalized Monotone Triangles with bottom row $(k_1,k_2,\ldots,k_n)$. Computational experiments indicate that certain evaluations of the polynomial at integral sequences yield well-known round numbers related to Alternating Sign Matrices. The main result provides a combinatorial interpretation of the conjectured identities and could turn out useful in giving bijective proofs.


2011 ◽  
Vol Vol. 13 no. 3 (Graph and Algorithms) ◽  
Author(s):  
Vida Dujmović ◽  
David R. Wood

Graphs and Algorithms International audience Every k-tree has book thickness at most k + 1, and this bound is best possible for all k \textgreater= 3. Vandenbussche et al. [SIAM J. Discrete Math., 2009] proved that every k-tree that has a smooth degree-3 tree decomposition with width k has book thickness at most k. We prove this result is best possible for k \textgreater= 4, by constructing a k-tree with book thickness k + 1 that has a smooth degree-4 tree decomposition with width k. This solves an open problem of Vandenbussche et al.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Jessica Striker ◽  
Nathan Williams

International audience We present an equivariant bijection between two actions—promotion and rowmotion—on order ideals in certain posets. This bijection simultaneously generalizes a result of R. Stanley concerning promotion on the linear extensions of two disjoint chains and certain cases of recent work of D. Armstrong, C. Stump, and H. Thomas on noncrossing and nonnesting partitions. We apply this bijection to several classes of posets, obtaining equivariant bijections to various known objects under rotation. We extend the same idea to give an equivariant bijection between alternating sign matrices under rowmotion and under B. Wieland's gyration. Lastly, we define two actions with related orders on alternating sign matrices and totally symmetric self-complementary plane partitions. Nous prèsentons une bijection èquivariante entre deux actions—promotion et rowmotion—sur les idèaux d'ordre dans certaines posets. Cette bijection gènèralise simultanèment un rèsultat de R. Stanley concernant la promotion sur les extensions linèaire de deux cha\^ınes disjointes et certains cas des travaux rècents de D. Armstrong, C. Stump, et H. Thomas sur les partitions noncroisèes et nonembo\^ıtèes. Nous appliquons cette bijection à plusieurs classes de posets pour obtenir des bijections èquivariantes a des diffèrents objets connus sous la rotation. Nous gènèralisons la même idèe pour donnè une bijection èquivariante entre les matrices à signes alternants sous rowmotion et sous la gyration de B. Wieland. Finalement, nous dèfinissons deux actions avec des ordres similaires sur les matrices à signes alternants et les partitions plane totalement symètriques et autocomplèmentaires.


1999 ◽  
Vol Vol. 3 no. 4 ◽  
Author(s):  
Ralf Hinze

International audience The theory and practice of polytypic programming is intimately connected with the initial algebra semantics of datatypes. This is both a blessing and a curse. It is a blessing because the underlying theory is beautiful and well developed. It is a curse because the initial algebra semantics is restricted to so-called regular datatypes. Recent work by R. Bird and L. Meertens [3] on the semantics of non-regular or nested datatypes suggests that an extension to general datatypes is not entirely straightforward. Here we propose an alternative that extends polytypism to arbitrary datatypes, including nested datatypes and mutually recursive datatypes. The central idea is to use rational trees over a suitable set of functor symbols as type arguments for polytypic functions. Besides covering a wider range of types the approach is also simpler and technically less involving than previous ones. We present several examples of polytypic functions, among others polytypic reduction and polytypic equality. The presentation assumes some background in functional and in polytypic programming. A basic knowledge of monads is required for some of the examples.


2007 ◽  
Vol 22 (1) ◽  
pp. 87-109 ◽  
Author(s):  
CHRIS REED ◽  
DOUGLAS WALTON ◽  
FABRIZIO MACAGNO

AbstractIn this paper, we present a survey of the development of the technique of argument diagramming covering not only the fields in which it originated — informal logic, argumentation theory, evidence law and legal reasoning — but also more recent work in applying and developing it in computer science and artificial intelligence (AI). Beginning with a simple example of an everyday argument, we present an analysis of it visualized as an argument diagram constructed using a software tool. In the context of a brief history of the development of diagramming, it is then shown how argument diagrams have been used to analyse and work with argumentation in law, philosophy and AI.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Darij Grinberg ◽  
Tom Roby

International audience Various authors have studied a natural operation (under various names) on the order ideals (equivalently antichains) of a finite poset, here called \emphrowmotion. For certain posets of interest, the order of this map is much smaller than one would naively expect, and the orbits exhibit unexpected properties. In very recent work (inspired by discussions with Berenstein) Einstein and Propp describe how rowmotion can be generalized: first to the piecewise-linear setting of order polytopes, then via detropicalization to the birational setting. In the latter setting, it is no longer \empha priori clear even that birational rowmotion has finite order, and for many posets the order is infinite. However, we are able to show that birational rowmotion has the same order, p+q, for the poset P=[p]×[q] (product of two chains), as ordinary rowmotion. We also show that birational (hence ordinary) rowmotion has finite order for some other classes of posets, e.g., the upper, lower, right and left halves of the poset above, and trees having all leaves on the same level. Our methods are based on those used by Volkov to resolve the type AA (rectangular) Zamolodchikov Periodicity Conjecture.


2010 ◽  
Vol Vol. 12 no. 3 (Combinatorics) ◽  
Author(s):  
Ioannis C. Michos

Combinatorics International audience M.-P. Schutzenberger asked to determine the support of the free Lie algebra L(Zm) (A) on a finite alphabet A over the ring Z(m) of integers mod m and all pairs of twin and anti-twin words, i.e., words that appear with equal (resp. opposite) coefficients in each Lie polynomial. We characterize the complement of the support of L(Zm) (A) in A* as the set of all words w such that m divides all the coefficients appearing in the monomials of l* (w), where l* is the adjoint endomorphism of the left normed Lie bracketing l of the free Lie ring. Calculating l* (w) via the shuffle product, we recover the well known result of Duchamp and Thibon (Discrete Math. 76 (1989) 123-132) for the support of the free Lie ring in a much more natural way. We conjecture that two words u and v of common length n, which lie in the support of the free Lie ring, are twin (resp. anti-twin) if and only if either u = v or n is odd and u = (v) over tilde (resp. if n is even and u = (v) over tilde), where (v) over tilde denotes the reversal of v and we prove that it suffices to show this for a two-lettered alphabet. These problems can be rephrased, for words of length n, in terms of the action of the Dynkin operator l(n) on lambda-tabloids, where lambda is a partition of n. Representing a word w in two letters by the subset I of [n] = \1, 2, ... , n\ that consists of all positions that one of the letters occurs in w, the computation of l* (w) leads us to the notion of the Pascal descent polynomial p(n)(I), a particular commutative multi-linear polynomial which is equal to the signed binomial coefficient when vertical bar I vertical bar = 1. We provide a recursion formula for p(n) (I) and show that if m inverted iota Sigma(i is an element of I)(1)(i-1) (n - 1 i - 1), then w lies in the support of L(Zm) (A).


Sign in / Sign up

Export Citation Format

Share Document