initial algebra
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 10)

H-INDEX

8
(FIVE YEARS 0)

2022 ◽  
Vol 6 (POPL) ◽  
pp. 1-29
Author(s):  
Marcelo Fiore ◽  
Dmitrij Szamozvancev

Despite extensive research both on the theoretical and practical fronts, formalising, reasoning about, and implementing languages with variable binding is still a daunting endeavour – repetitive boilerplate and the overly complicated metatheory of capture-avoiding substitution often get in the way of progressing on to the actually interesting properties of a language. Existing developments offer some relief, however at the expense of inconvenient and error-prone term encodings and lack of formal foundations. We present a mathematically-inspired language-formalisation framework implemented in Agda. The system translates the description of a syntax signature with variable-binding operators into an intrinsically-encoded, inductive data type equipped with syntactic operations such as weakening and substitution, along with their correctness properties. The generated metatheory further incorporates metavariables and their associated operation of metasubstitution, which enables second-order equational/rewriting reasoning. The underlying mathematical foundation of the framework – initial algebra semantics – derives compositional interpretations of languages into their models satisfying the semantic substitution lemma by construction.


2021 ◽  
Vol Volume 17, Issue 3 ◽  
Author(s):  
Jacopo Emmenegger

We present a construction of W-types in the setoid model of extensional Martin-L\"of type theory using dependent W-types in the underlying intensional theory. More precisely, we prove that the internal category of setoids has initial algebras for polynomial endofunctors. In particular, we characterise the setoid of algebra morphisms from the initial algebra to a given algebra as a setoid on a dependent W-type. We conclude by discussing the case of free setoids. We work in a fully intensional theory and, in fact, we assume identity types only when discussing free setoids. By using dependent W-types we can also avoid elimination into a type universe. The results have been verified in Coq and a formalisation is available on the author's GitHub page.


2021 ◽  
Vol Volume 17, Issue 3 ◽  
Author(s):  
Herman Geuvers ◽  
Bart Jacobs

A bisimulation for a coalgebra of a functor on the category of sets can be described via a coalgebra in the category of relations, of a lifted functor. A final coalgebra then gives rise to the coinduction principle, which states that two bisimilar elements are equal. For polynomial functors, this leads to well-known descriptions. In the present paper we look at the dual notion of "apartness". Intuitively, two elements are apart if there is a positive way to distinguish them. Phrased differently: two elements are apart if and only if they are not bisimilar. Since apartness is an inductive notion, described by a least fixed point, we can give a proof system, to derive that two elements are apart. This proof system has derivation rules and two elements are apart if and only if there is a finite derivation (using the rules) of this fact. We study apartness versus bisimulation in two separate ways. First, for weak forms of bisimulation on labelled transition systems, where silent (tau) steps are included, we define an apartness notion that corresponds to weak bisimulation and another apartness that corresponds to branching bisimulation. The rules for apartness can be used to show that two states of a labelled transition system are not branching bismilar. To support the apartness view on labelled transition systems, we cast a number of well-known properties of branching bisimulation in terms of branching apartness and prove them. Next, we also study the more general categorical situation and show that indeed, apartness is the dual of bisimilarity in a precise categorical sense: apartness is an initial algebra and gives rise to an induction principle. In this analogy, we include the powerset functor, which gives a semantics to non-deterministic choice in process-theory.


2021 ◽  
Vol vol. 23 no. 1 (Automata, Logic and Semantics) ◽  
Author(s):  
Zoltán Fülöp ◽  
Dávid Kószó ◽  
Heiko Vogler

We consider weighted tree automata (wta) over strong bimonoids and their initial algebra semantics and their run semantics. There are wta for which these semantics are different; however, for bottom-up deterministic wta and for wta over semirings, the difference vanishes. A wta is crisp-deterministic if it is bottom-up deterministic and each transition is weighted by one of the unit elements of the strong bimonoid. We prove that the class of weighted tree languages recognized by crisp-deterministic wta is the same as the class of recognizable step mappings. Moreover, we investigate the following two crisp-determinization problems: for a given wta ${\cal A}$, (a) does there exist a crisp-deterministic wta which computes the initial algebra semantics of ${\cal A}$ and (b) does there exist a crisp-deterministic wta which computes the run semantics of ${\cal A}$? We show that the finiteness of the Nerode algebra ${\cal N}({\cal A})$ of ${\cal A}$ implies a positive answer for (a), and that the finite order property of ${\cal A}$ implies a positive answer for (b). We show a sufficient condition which guarantees the finiteness of ${\cal N}({\cal A})$ and a sufficient condition which guarantees the finite order property of ${\cal A}$. Also, we provide an algorithm for the construction of the crisp-deterministic wta according to (a) if ${\cal N}({\cal A})$ is finite, and similarly for (b) if ${\cal A}$ has finite order property. We prove that it is undecidable whether an arbitrary wta ${\cal A}$ is crisp-determinizable. We also prove that both, the finiteness of ${\cal N}({\cal A})$ and the finite order property of ${\cal A}$ are undecidable.


2020 ◽  
Author(s):  
Jan Aldert Bergstra ◽  
John V. Tucker

In an arithmetical structure one can make division a total function by defining 1/0 to be an element of the structure, or by adding a new element, such as an error element also denoted with a new constant symbol, an unsigned infinity or one or both signed infinities, one positive and one negative. We define an enlargement of a field to a transfield, in which division is totalised by setting 1/0 equal to the positive infinite value and -1/0 equal to its opposite, and which also contains an error element to help control their effects. We construct the transrational numbers as a transfield of the field of rational numbers and consider it as an abstract data type. We give it an equational specification under initial algebra semantics.


Author(s):  
Manuele Filaci ◽  
◽  
Pierre Martinetti ◽  
◽  
◽  
...  

After a brief review on the applications of twisted spectral triples to physics, we adapt to the twisted case the notion of real part of a spectral triple. In particular, when one twists a usual spectral triple by its grading, we show that - depending on the KO dimension - the real part is either twisted as well, or is the intersection of the initial algebra with its opposite. We illustrate this result with the spectral triple of the standard model.


Author(s):  
Jiří Adámek ◽  
Stefan Milius ◽  
Lawrence S. Moss

AbstractThis paper studies fundamental questions concerning category-theoretic models of induction and recursion. We are concerned with the relationship between well-founded and recursive coalgebras for an endofunctor. For monomorphism preserving endofunctors on complete and well-powered categories every coalgebra has a well-founded part, and we provide a new, shorter proof that this is the coreflection in the category of all well-founded coalgebras. We present a new more general proof of Taylor’s General Recursion Theorem that every well-founded coalgebra is recursive, and we study conditions which imply the converse. In addition, we present a new equivalent characterization of well-foundedness: a coalgebra is well-founded iff it admits a coalgebra-to-algebra morphism to the initial algebra.


2019 ◽  
Author(s):  
Jan Aldert Bergstra

The class of dual number meadows is introduced. By definition this class is a quasivariety. Dual number meadows contain a non-zero element the square of which is zero. These structures are non-involutive and coregular. Some properties of the equational theory of dual number meadows are discussed and an initial algebra specification is given for the minimal dual number meadow of characteristic zero which contains the dual rational numbers. Several open problems are stated.


2019 ◽  
Vol 47 (1) ◽  
pp. 105
Author(s):  
Annanthakrishna Manokaran ◽  
Jayampathy Ratnayake ◽  
Romaine Jayewardene
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document