scholarly journals Further results on maximal nontraceable graphs of smallest size

2013 ◽  
Vol Vol. 15 no. 1 (Graph Theory) ◽  
Author(s):  
Alewyn Petrus Burger ◽  
Joy Elizabeth Singleton

Graph Theory International audience Let g(n) denote the minimum number of edges of a maximal nontraceable (MNT) graph of order n. In 2005 Frick and Singleton (Lower bound for the size of maximal nontraceable graphs, Electronic Journal of Combinatorics, 12(1) R32, 2005) proved that g(n) = ⌈3n-22 ⌉ for n ≥54 as well as for n ∈I, where I= 12,13,22,23,30,31,38,39, 40,41,42,43,46,47,48,49,50,51 and they determined g(n) for n ≤9. We determine g(n) for 18 of the remaining 26 values of n, showing that g(n) = ⌈ 3n-22 ⌉ for n ≥54 as well as for n ∈I ∪18,19,20,21,24,25,26,27,28, 29,32,33 and g(n) = ⌈ 3n2 ⌉ for n ∈ 10, 11, 14, 15, 16, 17. We give results based on ''analytic'' proofs as well as computer searches.

2008 ◽  
Vol Vol. 10 no. 3 ◽  
Author(s):  
Cyril Gavoille ◽  
Nicolas Hanusse

International audience In this paper we show an information-theoretic lower bound of kn - o(kn) on the minimum number of bits to represent an unlabeled simple connected n-node graph of pagenumber k. This has to be compared with the efficient encoding scheme of Munro and Raman of 2kn + 2m + o(kn+m) bits (m the number of edges), that is 4kn + 2n + o(kn) bits in the worst-case. For m-edge graphs of pagenumber k (with multi-edges and loops), we propose a 2mlog2k + O(m) bits encoding improving the best previous upper bound of Munro and Raman whenever m ≤ 1 / 2kn/log2 k. Actually our scheme applies to k-page embedding containing multi-edge and loops. Moreover, with an auxiliary table of o(m log k) bits, our coding supports (1) the computation of the degree of a node in constant time, (2) adjacency queries with O(logk) queries of type rank, select and match, that is in O(logk *minlogk / loglogm, loglogk) time and (3) the access to δ neighbors in O(δ) runs of select, rank or match;.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Gábor Simonyi ◽  
Gábor Tardos

International audience The local chromatic number of a graph, introduced by Erdős et al., is the minimum number of colors that must appear in the closed neighborhood of some vertex in any proper coloring of the graph. This talk would like to survey some of our recent results on this parameter. We give a lower bound for the local chromatic number in terms of the lower bound of the chromatic number provided by the topological method introduced by Lovász. We show that this bound is tight in many cases. In particular, we determine the local chromatic number of certain odd chromatic Schrijver graphs and generalized Mycielski graphs. We further elaborate on the case of $4$-chromatic graphs and, in particular, on surface quadrangulations.


2013 ◽  
Vol Vol. 15 no. 2 (Graph Theory) ◽  
Author(s):  
Paul D. Manuel ◽  
Bharati Rajan ◽  
Indra Rajasingh ◽  
P. Vasanthi Beulah

Graph Theory International audience We draw the r-dimensional butterfly network with 1 / 44r+O(r2r) crossings which improves the previous estimate given by Cimikowski (1996). We also give a lower bound which matches the upper bound obtained in this paper.


2013 ◽  
Vol Vol. 15 no. 2 (Graph Theory) ◽  
Author(s):  
Xiumei Wang ◽  
Cheng He ◽  
Yixun Lin

Graph Theory International audience For a brick apart from a few small graphs, Lovász (1987) proposed a conjecture on the existence of an edge whose deletion results in a graph with only one brick in its tight cut decomposition. Carvalho, Lucchesi, and Murty (2002) confirmed this conjecture by showing the existence of such two edges. This paper generalizes the result obtained by Carvalho et al. to the case of irreducible near-brick, where a graph is irreducible if it contains no induced odd path of length 3 or more. Meanwhile, a lower bound on the number of removable edges of matching-covered bipartite graphs is presented.


2013 ◽  
Vol Vol. 15 no. 1 (Graph Theory) ◽  
Author(s):  
Anja Kohl

Graph Theory International audience A b-coloring of a graph G by k colors is a proper vertex coloring such that each color class contains a color-dominating vertex, that is, a vertex having neighbors in all other k-1 color classes. The b-chromatic number χb(G) is the maximum integer k for which G has a b-coloring by k colors. Let Cnr be the rth power of a cycle of order n. In 2003, Effantin and Kheddouci established the b-chromatic number χb(Cnr) for all values of n and r, except for 2r+3≤n≤3r. For the missing cases they presented the lower bound L:= min n-r-1,r+1+⌊ n-r-1 / 3⌋ and conjectured that χb(Cnr)=L. In this paper, we determine the exact value on χb(Cnr) for the missing cases. It turns out that χb(Cnr)>L for 2r+3≤n≤2r+3+r-6 / 4.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Jun Tarui

International audience A family $\mathcal{P} = \{\pi_1, \ldots , \pi_q\}$ of permutations of $[n]=\{1,\ldots,n\}$ is $\textit{completely}$ $k$-$\textit{scrambling}$ [Spencer, 1972; Füredi, 1996] if for any distinct $k$ points $x_1,\ldots,x_k \in [n]$, permutations $\pi_i$'s in $\mathcal{P}$ produce all $k!$ possible orders on $\pi_i (x_1),\ldots, \pi_i(x_k)$. Let $N^{\ast}(n,k)$ be the minimum size of such a family. This paper focuses on the case $k=3$. By a simple explicit construction, we show the following upper bound, which we express together with the lower bound due to Füredi for comparison. $\frac{2}{ \log _2e} \log_2 n \leq N^{\ast}(n,3) \leq 2\log_2n + (1+o(1)) \log_2 \log _2n$. We also prove the existence of $\lim_{n \to \infty} N^{\ast}(n,3) / \log_2 n = c_3$. Determining the value $c_3$ and proving the existence of $\lim_{n \to \infty} N^{\ast}(n,k) / \log_2 n = c_k$ for $k \geq 4$ remain open.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 525
Author(s):  
Javier Rodrigo ◽  
Susana Merchán ◽  
Danilo Magistrali ◽  
Mariló López

In this paper, we improve the lower bound on the minimum number of  ≤k-edges in sets of n points in general position in the plane when k is close to n2. As a consequence, we improve the current best lower bound of the rectilinear crossing number of the complete graph Kn for some values of n.


2014 ◽  
Vol 24 (4) ◽  
pp. 658-679 ◽  
Author(s):  
JÓZSEF BALOGH ◽  
PING HU ◽  
BERNARD LIDICKÝ ◽  
OLEG PIKHURKO ◽  
BALÁZS UDVARI ◽  
...  

We show that for every sufficiently largen, the number of monotone subsequences of length four in a permutation onnpoints is at least\begin{equation*} \binom{\lfloor{n/3}\rfloor}{4} + \binom{\lfloor{(n+1)/3}\rfloor}{4} + \binom{\lfloor{(n+2)/3}\rfloor}{4}. \end{equation*}Furthermore, we characterize all permutations on [n] that attain this lower bound. The proof uses the flag algebra framework together with some additional stability arguments. This problem is equivalent to some specific type of edge colourings of complete graphs with two colours, where the number of monochromaticK4is minimized. We show that all the extremal colourings must contain monochromaticK4only in one of the two colours. This translates back to permutations, where all the monotone subsequences of length four are all either increasing, or decreasing only.


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Mauricio Soto ◽  
Christopher Thraves-Caro

Graph Theory International audience In this document, we study the scope of the following graph model: each vertex is assigned to a box in ℝd and to a representative element that belongs to that box. Two vertices are connected by an edge if and only if its respective boxes contain the opposite representative element. We focus our study on the case where boxes (and therefore representative elements) associated to vertices are spread in ℝ. We give both, a combinatorial and an intersection characterization of the model. Based on these characterizations, we determine graph families that contain the model (e. g., boxicity 2 graphs) and others that the new model contains (e. g., rooted directed path). We also study the particular case where each representative element is the center of its respective box. In this particular case, we provide constructive representations for interval, block and outerplanar graphs. Finally, we show that the general and the particular model are not equivalent by constructing a graph family that separates the two cases.


2007 ◽  
Vol Vol. 9 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Olivier Togni

Graphs and Algorithms International audience The strong chromatic index of a graph is the minimum number of colours needed to colour the edges in such a way that each colour class is an induced matching. In this paper, we present bounds for strong chromatic index of three different products of graphs in term of the strong chromatic index of each factor. For the cartesian product of paths, cycles or complete graphs, we derive sharper results. In particular, strong chromatic indices of d-dimensional grids and of some toroidal grids are given along with approximate results on the strong chromatic index of generalized hypercubes.


Sign in / Sign up

Export Citation Format

Share Document