scholarly journals A bound on the number of perfect matchings in Klee-graphs

2013 ◽  
Vol Vol. 15 no. 1 (Combinatorics) ◽  
Author(s):  
Marek Cygan ◽  
Marcin Pilipczuk ◽  
Riste Škrekovski

Combinatorics International audience The famous conjecture of Lovász and Plummer, very recently proven by Esperet et al. (2011), asserts that every cubic bridgeless graph has exponentially many perfect matchings. In this paper we improve the bound of Esperet et al. for a specific subclass of cubic bridgeless graphs called the Klee-graphs. We show that every Klee-graph with n ≥8 vertices has at least 3 *2(n+12)/60 perfect matchings.

2015 ◽  
Vol 338 (8) ◽  
pp. 1509-1514
Author(s):  
Louis Esperet ◽  
Giuseppe Mazzuoccolo

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Gregg Musiker ◽  
Ralf Schiffler

International audience We study cluster algebras with principal coefficient systems that are associated to unpunctured surfaces. We give a direct formula for the Laurent polynomial expansion of cluster variables in these cluster algebras in terms of perfect matchings of a certain graph $G_{T,\gamma}$ that is constructed from the surface by recursive glueing of elementary pieces that we call tiles. We also give a second formula for these Laurent polynomial expansions in terms of subgraphs of the graph $G_{T,\gamma}$ . Nous étudions des algèbres amassées avec coefficients principaux associées aux surfaces. Nous présentons une formule directe pour les développements de Laurent des variables amassées dans ces algèbres en terme de couplages parfaits d'un certain graphe $G_{T,\gamma}$ que l'on construit a partir de la surface en recollant des pièces élémentaires que l'on appelle carreaux. Nous donnons aussi une seconde formule pour ces développements en termes de sous-graphes de $G_{T,\gamma}$ .


2015 ◽  
Vol Vol. 17 no.2 (Graph Theory) ◽  
Author(s):  
Ahmad Biniaz ◽  
Prosenjit Bose ◽  
Anil Maheshwari ◽  
Michiel Smid

International audience Given a set $P$ of $n$ points in the plane, where $n$ is even, we consider the following question: How many plane perfect matchings can be packed into $P$? For points in general position we prove the lower bound of &#x230A;log<sub>2</sub>$n$&#x230B;$-1$. For some special configurations of point sets, we give the exact answer. We also consider some restricted variants of this problem.


2007 ◽  
Vol Vol. 9 no. 1 (Graph and Algorithms) ◽  
Author(s):  
An Chang ◽  
Wai Chee Shiu

Graphs and Algorithms International audience Résumé comportant des formules mathématiques, disponible sur le ficher pdf / Abstract with mathematical formulas, available on pdf file.


2010 ◽  
Vol Vol. 12 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Oswin Aichholzer ◽  
Sergio Cabello ◽  
Ruy Fabila-Monroy ◽  
David Flores-Peñaloza ◽  
Thomas Hackl ◽  
...  

Graphs and Algorithms International audience A geometric graph is a graph G = (V, E) drawn in the plane, such that V is a point set in general position and E is a set of straight-line segments whose endpoints belong to V. We study the following extremal problem for geometric graphs: How many arbitrary edges can be removed from a complete geometric graph with n vertices such that the remaining graph still contains a certain non-crossing subgraph. The non-crossing subgraphs that we consider are perfect matchings, subtrees of a given size, and triangulations. In each case, we obtain tight bounds on the maximum number of removable edges.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Natasha Blitvić

International audience A <i>stabilized-interval-free </i> (SIF) permutation on [n], introduced by Callan, is a permutation that does not stabilize any proper interval of [n]. Such permutations are known to be the irreducibles in the decomposition of permutations along non-crossing partitions. That is, if $s_n$ denotes the number of SIF permutations on [n], $S(z)=1+\sum_{n\geq1} s_n z^n$, and $F(z)=1+\sum_{n\geq1} n! z^n$, then $F(z)= S(zF(z))$. This article presents, in turn, a decomposition of SIF permutations along non-crossing partitions. Specifically, by working with a convenient diagrammatic representation, given in terms of perfect matchings on alternating binary strings, we arrive at the \emphchord-connected permutations on [n], counted by $\{c_n\}_{n\geq1}$, whose generating function satisfies $S(z)= C(zS(z))$. The expressions at hand have immediate probabilistic interpretations, via the celebrated <i>moment-cumulant formula </i>of Speicher, in the context of the <i>free probability theory </i>of Voiculescu. The probability distributions that appear are the exponential and the complex Gaussian.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Massimiliano Mattera

International audience We study annihilating random walks on $\mathbb{Z}$ using techniques of P.W. Kasteleyn and $R$. Kenyonon perfect matchings of planar graphs. We obtain the asymptotic of the density of remaining particles and the partition function of the underlying statistical mechanical model.


2014 ◽  
Vol Vol. 16 no. 3 (Graph Theory) ◽  
Author(s):  
Xiaolong Huang ◽  
Hengzhe Li ◽  
Xueliang Li ◽  
Yuefang Sun

Graph Theory International audience The oriented diameter of a bridgeless graph G is min diam(H) | H is a strang orientation of G. A path in an edge-colored graph G, where adjacent edges may have the same color, is called rainbow if no two edges of the path are colored the same. The rainbow connection number rc(G) of G is the smallest integer number k for which there exists a k-edge-coloring of G such that every two distinct vertices of G are connected by a rainbow path. In this paper, we obtain upper bounds for the oriented diameter and the rainbow connection number of a graph in terms of rad(G) and η(G), where rad(G) is the radius of G and η(G) is the smallest integer number such that every edge of G is contained in a cycle of length at most η(G). We also obtain constant bounds of the oriented diameter and the rainbow connection number for a (bipartite) graph G in terms of the minimum degree of G.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Gregg Musiker

International audience In this paper we give a graph theoretic combinatorial interpretation for the cluster variables that arise in most cluster algebras of finite type. In particular, we provide a family of graphs such that a weighted enumeration of their perfect matchings encodes the numerator of the associated Laurent polynomial while decompositions of the graphs correspond to the denominator. This complements recent work by Schiffler and Carroll-Price for a cluster expansion formula for the $A_n$ case while providing a novel interpretation for the $B_n$, $C_n$, and $D_n$ cases. Dans cet article nous donnons une interprétation combinatoire en termes de théorie des graphes pour les variables de clusters qui apparaissent dans la plupart des algèbres à clusters de type fini. En particulier, nous décrivons une famille de graphes tels qu'une énumération pondérée de leurs matchings parfaits encode le numérateur du polynôme de Laurent associé, tandis que les décompositions du graphe correspondent au dénominateur. Ceci complète les récents travaux de Schiffler et Carroll-Price qui donnent une formule pour le développement d'une variable de cluster dans le cas $A_n$, tout en fournissant une nouvelle interprétation dans les cas $B_n$, $C_n$ et $D_n$.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Tomáš Kaiser ◽  
Riste Škrekovski

International audience We prove that every cubic bridgeless graph $G$ contains a $2$-factor which intersects all (minimal) edge-cuts of size $3$ or $4$. This generalizes an earlier result of the authors, namely that such a $2$-factor exists provided that $G$ is planar. As a further extension, we show that every graph contains a cycle (a union of edge-disjoint circuits) that intersects all edge-cuts of size $3$ or $4$. Motivated by this result, we introduce the concept of a coverable set of integers and discuss a number of questions, some of which are related to classical problems of graph theory such as Tutte's $4$-flow conjecture or the Dominating circuit conjecture.


Sign in / Sign up

Export Citation Format

Share Document