scholarly journals Cluster algebras of unpunctured surfaces and snake graphs

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Gregg Musiker ◽  
Ralf Schiffler

International audience We study cluster algebras with principal coefficient systems that are associated to unpunctured surfaces. We give a direct formula for the Laurent polynomial expansion of cluster variables in these cluster algebras in terms of perfect matchings of a certain graph $G_{T,\gamma}$ that is constructed from the surface by recursive glueing of elementary pieces that we call tiles. We also give a second formula for these Laurent polynomial expansions in terms of subgraphs of the graph $G_{T,\gamma}$ . Nous étudions des algèbres amassées avec coefficients principaux associées aux surfaces. Nous présentons une formule directe pour les développements de Laurent des variables amassées dans ces algèbres en terme de couplages parfaits d'un certain graphe $G_{T,\gamma}$ que l'on construit a partir de la surface en recollant des pièces élémentaires que l'on appelle carreaux. Nous donnons aussi une seconde formule pour ces développements en termes de sous-graphes de $G_{T,\gamma}$ .

2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Gregg Musiker

International audience In this paper we give a graph theoretic combinatorial interpretation for the cluster variables that arise in most cluster algebras of finite type. In particular, we provide a family of graphs such that a weighted enumeration of their perfect matchings encodes the numerator of the associated Laurent polynomial while decompositions of the graphs correspond to the denominator. This complements recent work by Schiffler and Carroll-Price for a cluster expansion formula for the $A_n$ case while providing a novel interpretation for the $B_n$, $C_n$, and $D_n$ cases. Dans cet article nous donnons une interprétation combinatoire en termes de théorie des graphes pour les variables de clusters qui apparaissent dans la plupart des algèbres à clusters de type fini. En particulier, nous décrivons une famille de graphes tels qu'une énumération pondérée de leurs matchings parfaits encode le numérateur du polynôme de Laurent associé, tandis que les décompositions du graphe correspondent au dénominateur. Ceci complète les récents travaux de Schiffler et Carroll-Price qui donnent une formule pour le développement d'une variable de cluster dans le cas $A_n$, tout en fournissant une nouvelle interprétation dans les cas $B_n$, $C_n$ et $D_n$.


10.37236/6464 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Kyungyong Lee ◽  
Li Li ◽  
Ba Nguyen

Lots of research focuses on the combinatorics behind various bases of cluster algebras. This paper studies the natural basis of a type $A$ cluster algebra, which consists of all cluster monomials. We introduce a new kind of combinatorial formula for the cluster monomials in terms of the so-called globally compatible collections. We give bijective proofs of these formulas by comparing with the well-known combinatorial models of the $T$-paths and of the perfect matchings in a snake diagram. For cluster variables of a type $A$ cluster algebra, we give a bijection that relates our new formula with the theta functions constructed by Gross, Hacking, Keel and Kontsevich.


2015 ◽  
Vol Vol. 17 no.2 (Graph Theory) ◽  
Author(s):  
Ahmad Biniaz ◽  
Prosenjit Bose ◽  
Anil Maheshwari ◽  
Michiel Smid

International audience Given a set $P$ of $n$ points in the plane, where $n$ is even, we consider the following question: How many plane perfect matchings can be packed into $P$? For points in general position we prove the lower bound of &#x230A;log<sub>2</sub>$n$&#x230B;$-1$. For some special configurations of point sets, we give the exact answer. We also consider some restricted variants of this problem.


2007 ◽  
Vol Vol. 9 no. 1 (Graph and Algorithms) ◽  
Author(s):  
An Chang ◽  
Wai Chee Shiu

Graphs and Algorithms International audience Résumé comportant des formules mathématiques, disponible sur le ficher pdf / Abstract with mathematical formulas, available on pdf file.


2010 ◽  
Vol Vol. 12 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Oswin Aichholzer ◽  
Sergio Cabello ◽  
Ruy Fabila-Monroy ◽  
David Flores-Peñaloza ◽  
Thomas Hackl ◽  
...  

Graphs and Algorithms International audience A geometric graph is a graph G = (V, E) drawn in the plane, such that V is a point set in general position and E is a set of straight-line segments whose endpoints belong to V. We study the following extremal problem for geometric graphs: How many arbitrary edges can be removed from a complete geometric graph with n vertices such that the remaining graph still contains a certain non-crossing subgraph. The non-crossing subgraphs that we consider are perfect matchings, subtrees of a given size, and triangulations. In each case, we obtain tight bounds on the maximum number of removable edges.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Emmanuel Tsukerman ◽  
Lauren Williams ◽  
Bernd Sturmfels

International audience Kenyon and Pemantle (2014) gave a formula for the entries of a square matrix in terms of connected principal and almost-principal minors. Each entry is an explicit Laurent polynomial whose terms are the weights of domino tilings of a half Aztec diamond. They conjectured an analogue of this parametrization for symmetric matrices, where the Laurent monomials are indexed by Catalan paths. In this paper we prove the Kenyon-Pemantle conjecture, and apply this to a statistics problem pioneered by Joe (2006). Correlation matrices are represented by an explicit bijection from the cube to the elliptope.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Natasha Blitvić

International audience A <i>stabilized-interval-free </i> (SIF) permutation on [n], introduced by Callan, is a permutation that does not stabilize any proper interval of [n]. Such permutations are known to be the irreducibles in the decomposition of permutations along non-crossing partitions. That is, if $s_n$ denotes the number of SIF permutations on [n], $S(z)=1+\sum_{n\geq1} s_n z^n$, and $F(z)=1+\sum_{n\geq1} n! z^n$, then $F(z)= S(zF(z))$. This article presents, in turn, a decomposition of SIF permutations along non-crossing partitions. Specifically, by working with a convenient diagrammatic representation, given in terms of perfect matchings on alternating binary strings, we arrive at the \emphchord-connected permutations on [n], counted by $\{c_n\}_{n\geq1}$, whose generating function satisfies $S(z)= C(zS(z))$. The expressions at hand have immediate probabilistic interpretations, via the celebrated <i>moment-cumulant formula </i>of Speicher, in the context of the <i>free probability theory </i>of Voiculescu. The probability distributions that appear are the exponential and the complex Gaussian.


2013 ◽  
Vol Vol. 15 no. 1 (Combinatorics) ◽  
Author(s):  
Marek Cygan ◽  
Marcin Pilipczuk ◽  
Riste Škrekovski

Combinatorics International audience The famous conjecture of Lovász and Plummer, very recently proven by Esperet et al. (2011), asserts that every cubic bridgeless graph has exponentially many perfect matchings. In this paper we improve the bound of Esperet et al. for a specific subclass of cubic bridgeless graphs called the Klee-graphs. We show that every Klee-graph with n ≥8 vertices has at least 3 *2(n+12)/60 perfect matchings.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Massimiliano Mattera

International audience We study annihilating random walks on $\mathbb{Z}$ using techniques of P.W. Kasteleyn and $R$. Kenyonon perfect matchings of planar graphs. We obtain the asymptotic of the density of remaining particles and the partition function of the underlying statistical mechanical model.


10.37236/5282 ◽  
2015 ◽  
Vol 22 (4) ◽  
Author(s):  
Cesar Ceballos ◽  
Vincent Pilaud

We present a combinatorial model for cluster algebras of type $D_n$ in terms of centrally symmetric pseudotriangulations of a regular $2n$ gon with a small disk in the centre. This model provides convenient and uniform interpretations for clusters, cluster variables and their exchange relations, as well as for quivers and their mutations. We also present a new combinatorial interpretation of cluster variables in terms of perfect matchings of a graph after deleting two of its vertices. This interpretation differs from known interpretations in the literature. Its main feature, in contrast with other interpretations, is that for a fixed initial cluster seed, one or two graphs serve for the computation of all cluster variables. Finally, we discuss applications of our model to polytopal realizations of type $D$ associahedra and connections to subword complexes and $c$-cluster complexes.


Sign in / Sign up

Export Citation Format

Share Document