scholarly journals On mean value results for the Riemann zeta-function in short intervals.

2009 ◽  
Vol Volume 32 ◽  
Author(s):  
Aleksandar Ivić

International audience We discuss the mean values of the Riemann zeta-function $\zeta(s)$, and analyze upper and lower bounds for $$\int_T^{T+H} \vert\zeta(\frac{1}{2}+it)\vert^{2k}\,dt~~~~~~(k\in\mathbb{N}~{\rm fixed,}~1<\!\!< H \leq T).$$ In particular, the author's new upper bound for the above integral under the Riemann hypothesis is presented.

1978 ◽  
Vol Volume 1 ◽  
Author(s):  
K Ramachandra

International audience The present paper is concerned with $\Omega$-estimates of the quantity $$(1/H)\int_{T}^{T+H}\vert(d^m/ds^m)\zeta^k(\frac{1}{2}+it)\vert dt$$ where $k$ is a positive number (not necessarily an integer), $m$ a nonnegative integer, and $(\log T)^{\delta}\leq H \leq T$, where $\delta$ is a small positive constant. The main theorems are stated for Dirichlet series satisfying certain conditions and the corollaries concerning the zeta function illustrate quite well the scope and interest of the results. %It is proved that if $2k\geq1$ and $T\geq T_0(\delta)$, then $$(1/H)\int_{T}^{T+H}\vert \zeta(\frac{1}{2}+it)\vert^{2k}dt > (\log H)^{k^2}(\log\log H)^{-C}$$ and $$(1/H)\int_{T}^{T+H} \vert\zeta'(\frac{1}{2}+it)\vert dt > (\log H)^{5/4}(\log\log H)^{-C},$$ where $C$ is a constant depending only on $\delta$.


1995 ◽  
Vol Volume 18 ◽  
Author(s):  
R Balasubramanian ◽  
K Ramachandra

International audience In this paper, two conjectures on the mean value of Dirichlet polynomials are given and are shown to imply good lower bound for $\int_H^{T+H}\vert\zeta(\frac{1}{2}+it)^k\vert^2\,dt$, uniform in $k$ and independent of $T$.


2009 ◽  
Vol 85 (99) ◽  
pp. 1-17 ◽  
Author(s):  
Aleksandar Ivic

It is proved that, for T? ? G = G(T)? ??T, ?T2T(I1(t+G,G)- I1(t,G))2 dt = TG ?aj logj (?T/G)+ O?(T1+? G1/2+ +T1/2?G? with some explicitly computable constants aj(a3>0)where, for fixed K ? N, Ik(t,G)= 1/?? ? ? -? |?(1/2 + it + iu)|2k e -(u/G)?du. The generalizations to the mean square of I1(t+U,G)-I1(t,G) over [T,T+H] and the estimation of the mean square of I2(t+ U,G) - I2(t,G) are also discussed.


1983 ◽  
Vol Volume 6 ◽  
Author(s):  
K Ramachandra

International audience The results given in these papers continue the theme developed in part I of this series. In Part III we prove $M(\frac{1}{2})>\!\!\!>_k (\log H_0/q_n)^{k^2}$, where $p_m/q_m$ is the $m$th convergent of the continued fraction expansion of $k$, and $n$ is the unique integer such that $q_nq_{n+1}\geq \log\log H_0 > q_nq_{n-1}$. Section 4 of part III discusses lower bounds of mean values of Titchmarsh series.


Sign in / Sign up

Export Citation Format

Share Document