scholarly journals Pi Power System Controller: Eigenstructure – Based Design and Sensitivities

2021 ◽  
Vol 15 ◽  
pp. 84-89
Author(s):  
A. El kashlan ◽  
Shady El kashlan

Significant advances in power system control design techniques that can take into consideration plants linearized around a number of operating conditions. Most of these techniques are based on eigenspectrum analysis which has numerous advantages. A wealth of applications of eigenstructure assignment are available in the literature and showed that new applications have been found and parametric solution of eigenspectrum assignment can be used successfully to design feedback controllers. The use of supplementary controller added to the automatic voltage regulator (AVR) is a practical effective way to supply additional positive damping to system oscillations via power system stabilizers. The present paper utilizes eigenspectrum analysis in the practical design of proportional integral (PI) type power system stabilizers, in order to achieve good steady state as well as transient response characteristics. Eigenspectrum analysis is attractive since it takes into account freedom in determining feedback gains and provides the frequencies and the damping at each frequency for the entire system in a single calculation. Moreover sensitivity of eigenvalues and eigenvectors with respect to parameter variations are assessed so as to provide information to improve setting parameters for power system damping and stability, without ignoring the operating conditions. The results of eigenvalue/eigenvector sensitivity are tangible for analysis with a wide range of parameter variations and is presented through the right and left eigenvectors of the system matrix and also through Taylor series analysis.

2021 ◽  
Vol 11 (3) ◽  
pp. 7283-7289
Author(s):  
F. A. Alshammari ◽  
G. A. Alshammari ◽  
T. Guesmi ◽  
A. A. Alzamil ◽  
B. M. Alshammari ◽  
...  

This study presents a metaheuristic method for the optimum design of multimachine Power System Stabilizers (PSSs). In the proposed method, referred to as Local Search-based Non-dominated Sorting Genetic Algorithm (LSNSGA), a local search mechanism is incorporated at the end of the second version of the non-dominated sorting genetic algorithm in order to improve its convergence rate and avoid the convergence to local optima. The parameters of PSSs are tuned using LSNSGA over a wide range of operating conditions, in order to provide the best damping of critical electromechanical oscillations. Eigenvalue-based objective functions are employed in the PSS design process. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation proved that the proposed controller provided competitive results compared to other metaheuristic techniques.


Author(s):  
G. Fusco ◽  
M. Russo

This paper proposes a simple design procedure to solve the problem of controlling generator transient stability following large disturbances in power systems. A state-feedback excitation controller and power system stabilizer are designed to guarantee robustness against uncertainty in the system parameters. These controllers ensure satisfactory swing damping and quick decay of the voltage regulation error over a wide range of operating conditions. The controller performance is evaluated in a case study in which a three-phase short-circuit fault near the generator terminals in a four-bus power system is simulated.


Sign in / Sign up

Export Citation Format

Share Document