Siting of Power System Stabilizers for a Wide Range of Operating Conditions

Author(s):  
A. Feliachi ◽  
X. Yang ◽  
X. Zhang
2021 ◽  
Vol 11 (3) ◽  
pp. 7283-7289
Author(s):  
F. A. Alshammari ◽  
G. A. Alshammari ◽  
T. Guesmi ◽  
A. A. Alzamil ◽  
B. M. Alshammari ◽  
...  

This study presents a metaheuristic method for the optimum design of multimachine Power System Stabilizers (PSSs). In the proposed method, referred to as Local Search-based Non-dominated Sorting Genetic Algorithm (LSNSGA), a local search mechanism is incorporated at the end of the second version of the non-dominated sorting genetic algorithm in order to improve its convergence rate and avoid the convergence to local optima. The parameters of PSSs are tuned using LSNSGA over a wide range of operating conditions, in order to provide the best damping of critical electromechanical oscillations. Eigenvalue-based objective functions are employed in the PSS design process. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation proved that the proposed controller provided competitive results compared to other metaheuristic techniques.


2021 ◽  
Vol 15 ◽  
pp. 84-89
Author(s):  
A. El kashlan ◽  
Shady El kashlan

Significant advances in power system control design techniques that can take into consideration plants linearized around a number of operating conditions. Most of these techniques are based on eigenspectrum analysis which has numerous advantages. A wealth of applications of eigenstructure assignment are available in the literature and showed that new applications have been found and parametric solution of eigenspectrum assignment can be used successfully to design feedback controllers. The use of supplementary controller added to the automatic voltage regulator (AVR) is a practical effective way to supply additional positive damping to system oscillations via power system stabilizers. The present paper utilizes eigenspectrum analysis in the practical design of proportional integral (PI) type power system stabilizers, in order to achieve good steady state as well as transient response characteristics. Eigenspectrum analysis is attractive since it takes into account freedom in determining feedback gains and provides the frequencies and the damping at each frequency for the entire system in a single calculation. Moreover sensitivity of eigenvalues and eigenvectors with respect to parameter variations are assessed so as to provide information to improve setting parameters for power system damping and stability, without ignoring the operating conditions. The results of eigenvalue/eigenvector sensitivity are tangible for analysis with a wide range of parameter variations and is presented through the right and left eigenvectors of the system matrix and also through Taylor series analysis.


Author(s):  
G. Fusco ◽  
M. Russo

This paper proposes a simple design procedure to solve the problem of controlling generator transient stability following large disturbances in power systems. A state-feedback excitation controller and power system stabilizer are designed to guarantee robustness against uncertainty in the system parameters. These controllers ensure satisfactory swing damping and quick decay of the voltage regulation error over a wide range of operating conditions. The controller performance is evaluated in a case study in which a three-phase short-circuit fault near the generator terminals in a four-bus power system is simulated.


2015 ◽  
Vol 4 (3) ◽  
pp. 33-48 ◽  
Author(s):  
Yosra Welhazi ◽  
Tawfik Guesmi ◽  
Hsan Hadj Abdallah

Applying multi-objective particle swarm optimization (MOPSO) algorithm to multi-objective design of multimachine power system stabilizers (PSSs) is presented in this paper. The proposed approach is based on MOPSO algorithm to search for optimal parameter settings of PSS for a wide range of operating conditions. Moreover, a fuzzy set theory is developed to extract the best compromise solution. The stabilizers are selected using MOPSO to shift the lightly damped and undamped electromechanical modes to a prescribed zone in the s-plane. The problem of tuning the stabilizer parameters is converted to an optimization problem with eigenvalue-based multi-objective function. The performance of the proposed approach is investigated for a three-machine nine-bus system under different operating conditions. The effectiveness of the proposed approach in damping the electromechanical modes and enhancing greatly the dynamic stability is confirmed through eigenvalue analysis, nonlinear simulation results and some performance indices over a wide range of loading conditions.


AIMS Energy ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1241-1259
Author(s):  
Lei Liu ◽  
◽  
Takeyoshi Kato ◽  
Paras Mandal ◽  
Alexey Mikhaylov ◽  
...  

<abstract><p>This work presents a load frequency control scheme in Renewable Energy Sources(RESs) power system by applying Model Predictive Control(MPC). The MPC is designed depending on the first model parameter and then investigate its performance on the second model to confirm its robustness and effectiveness over a wide range of operating conditions. The first model is 100% RESs system with Photovoltaic generation(PV), wind generation(WG), fuel cell, seawater electrolyzer, and storage battery. From the simulation results of the first case, it shows the control scheme is efficiency. And base on the good results of the first case study, to propose a second case using a 10-bus power system of Okinawa island, Japan, to verify the efficiency of proposed MPC control scheme again. In addition, in the second case, there also applied storage devices, demand-response technique and RESs output control to compensate the system frequency balance. Last, there have a detailed results analysis to compare the two cases simulation results, and then to Prospects for future research. All the simulations of this work are performed in Matlab®/Simulink®.</p></abstract>


2020 ◽  
Vol 27 (4) ◽  
pp. 70-86
Author(s):  
firas AlDurze ◽  
sura Abdullah

The basic aim of the power system stabilizer is to damp the fluctuations that occur on the rotating axis of the synchronous generator that result from noise or disturbance on the power system. This is achieved by producing an appropriate damping torque for these fluctuations across the excitation circuit of the generator and for a wide range of operation conditions. The study describes the types of power system stabilizers and giving an mathematical model of the power system that consists of a synchronous machine connected to the infinite bus though transmission lines. This has been achieved by simulating the electric and mechanical equations of power systems and proposing a methodological approach to design a Fuzzy Logic Power System Stabilize (FPSS) relaying in the design on the (Matlab/Fuzzy logic toolbox).Speed deviation (Δω) and acceleration (∆ώ) of the synchronous machine are chosen as the input signals to the fuzzy controller in order to achieve a good dynamic performance .The complete range for the variation of each of the two controller inputs is represented by a 7×7 decision table, i.e. 49 rules using proportional derivative like fuzzy logic. The power system (SMIB) was tested with the presence and absence of the excitation system, then (CPSS) was added, and then (FPSS).The simulation results of the proposed fuzzy logic on )SMIB( gave a better dynamic response, decreased the settling time and good performance of the stabilizer in damping the fluctuations that arise in the speed of rotation of the generator and its active power in various operating conditions when proposed (FPSS) is compared with conventional PSS. The simulation results proved the superior performance of the proposed (FPSS).


2013 ◽  
Vol 62 (1) ◽  
pp. 141-152 ◽  
Author(s):  
K. Abdul Hameed ◽  
S. Palani

Abstract In this paper, a novel bacterial foraging algorithm (BFA) based approach for robust and optimal design of PID controller connected to power system stabilizer (PSS) is proposed for damping low frequency power oscillations of a single machine infinite bus bar (SMIB) power system. This paper attempts to optimize three parameters (Kp, Ki, Kd) of PID-PSS based on foraging behaviour of Escherichia coli bacteria in human intestine. The problem of robustly selecting the parameters of the power system stabilizer is converted to an optimization problem which is solved by a bacterial foraging algorithm with a carefully selected objective function. The eigenvalue analysis and the simulation results obtained for internal and external disturbances for a wide range of operating conditions show the effectiveness and robustness of the proposed BFAPSS. Further, the time domain simulation results when compared with those obtained using conventional PSS and Genetic Algorithm (GA) based PSS show the superiority of the proposed design.


2017 ◽  
Vol 16 (1/2) ◽  
pp. 3-28 ◽  
Author(s):  
Prasenjit Dey ◽  
Aniruddha Bhattacharya ◽  
Priyanath Das

This paper reports a new technique for achieving optimized design for power system stabilizers. In any large scale interconnected systems, disturbances of small magnitudes are very common and low frequency oscillations pose a major problem. Hence small signal stability analysis is very important for analyzing system stability and performance. Power System Stabilizers (PSS) are used in these large interconnected systems for damping out low-frequency oscillations by providing auxiliary control signals to the generator excitation input. In this paper, collective decision optimization (CDO) algorithm, a meta-heuristic approach based on the decision making approach of human beings, has been applied for the optimal design of PSS. PSS parameters are tuned for the objective function, involving eigenvalues and damping ratios of the lightly damped electromechanical modes over a wide range of operating conditions. Also, optimal locations for PSS placement have been derived. Comparative study of the results obtained using CDO with those of grey wolf optimizer (GWO), differential Evolution (DE), Whale Optimization Algorithm (WOA) and crow search algorithm (CSA) methods, established the robustness of the algorithm in designing PSS under different operating conditions.


Author(s):  
Muhammad Abdillah ◽  
Teguh Aryo Nugroho ◽  
Herlambang Setiadi

Commonly, primary control, i.e. governor, in the generation unit had been employed to stabilize the change of frequency due to the change of electrical load during system operation. But, the drawback of the primary control was it could not return the frequency to its nominal value when the disturbance was occurred. Thus, the aim of the primary control was only stabilizing the frequency to reach its new value after there were load changes. Therefore, the LQR control is employed as a supplementary control called Load Frequency Control (LFC) to restore and keep the frequency on its nominal value after load changes occurred on the power system grid. However, since the LQR control parameters were commonly adjusted based on classical or Trial-Error Method (TEM), it was incapable of obtaining good dynamic performance for a wide range of operating conditions and various load change scenarios. To overcome this problem, this paper proposed an Artificial Immune System (AIS) via clonal selection to automatically adjust the weighting matrices, Q and R, of LQR related to various system operating conditions changes. The efficacy of the proposed control scheme was tested on a two-area power system network. The obtained simulation results have shown that the proposed method could reduce the settling time and the overshoot of frequency oscillation, which is better than conventional LQR optimal control and without LQR optimal control.


Sign in / Sign up

Export Citation Format

Share Document