scholarly journals A Scale-Aware Modeling Framework to Quantify Subsurface Geochemical Exports and River Water Quality

2020 ◽  
Author(s):  
Dipankar Dwivedi ◽  
Carl Steefel ◽  
Michelle Newcomer ◽  
Bhavna Arora ◽  
Ilhan Özgen-Xian ◽  
...  
2018 ◽  
Vol 9 (3) ◽  
pp. 512-524 ◽  
Author(s):  
S. Rehana ◽  
C. T. Dhanya

Abstract A river water quality management model under average climatic conditions may not be able to account for the extreme risk of low water quality which is more prominent under an increase in river water temperature and altered river flows. A modeling framework is developed to assess the risk of river low water quality extremes by integrating a statistical downscaling model based on Canonical Correlation Analysis, risk quantification model based on Frank Archimedean Copula function and multiple logistic regression model integrated with a river water quality simulation model, QUAL2 K. The results reveal that the combination of predicted decrease in low flows of approximately 57% and increase in maximum river water temperatures of approximately 1.2°C has shown an increase of about 46% in risk of low water quality conditions for the future scenarios along Tunga-Bhadra River, India. The extreme risk of low water quality is observed to increase by 50.6% for the period 2020–2040 when compared with the current extreme conditions of 4.5% and average risk conditions of about 3% for the period 1988–2005. The study captured the occurrence of extremes of low water quality with evidence of a strong link between climate and water quality impairment events.


2008 ◽  
Author(s):  
Annett B. Sullivan ◽  
Michael L. Deas ◽  
Jessica Asbill ◽  
Julie D. Kirshtein ◽  
Kenna D. Butler ◽  
...  

1994 ◽  
Vol 30 (2) ◽  
pp. 53-61 ◽  
Author(s):  
Shiyu Li ◽  
Guang Hao Chen

A mathematical model is proposed to predict the removal of dissolved organic substances and the consumption of dissolved oxygen by attached biofilms in an open-channel flow. The model combines the biofilm equations with the conventional Streeter–Phelps type equations of river water quality by considering the mass transfer of organics and oxygen in the river water through the diffusion layer into the biofilm. It is assumed that the diffusion and reaction within the biofilm are of steady-state, and follow Monod kinetics. The model is solved numerically with a trial-and-error method. The simulation results of the model for an ideal case of river flow and biofilm show that the organic removal rate and oxygen consumption rate caused by the biofilm are greater than that by suspended biomass. The effects of diffusion layer thickness, flow velocity, and biofilm thickness on the change of river water quality are discussed.


2021 ◽  
Vol 1098 (5) ◽  
pp. 052020
Author(s):  
L S Mulyani ◽  
R Mardiani ◽  
C Ardiana ◽  
S Nurkamilah

Sign in / Sign up

Export Citation Format

Share Document