scholarly journals Statistical Downscaling of Rainfall Under Climate Change in Krishna River Sub-basin of Andhra Pradesh, India Using Artificial Neural Network (ANN)

Author(s):  
K.V.R. Satya Sai ◽  
S. Krishnaiah ◽  
A. Manjunath
2018 ◽  
Vol 10 (1) ◽  
pp. 158-166 ◽  
Author(s):  
Yong Lin ◽  
Hui Wen ◽  
Shirong Liu

Abstract Climate change and its hydrological consequences are of great concern for water resources managers in the context of global change. This is especially true for Upper Minjiang River (UMR) basin, where surface runoff was reported to decrease following forest harvesting, as this unusual forest–water relationship is perhaps attributed to climate change. To quantify the hydrological impacts of climate change and to better understand the forest–water relationship, an artificial neural network (ANN)-based precipitation–runoff model was applied to Zagunao catchment, one of the typical catchments in UMR basin, by a climate scenario-based simulation approach. Two variables, seasonality and CTsm (cumulative temperature for snow melting), were devised to reflect the different flow generation mechanisms of Zagunao catchment in different seasons (rainfall-induced versus snow melting-oriented). It was found that the ANN model simulated precipitation–runoff transformation very well (R2 = 0.962). Results showed runoff of Zagunao catchment would increase with the increase in precipitation as well as temperature and such a response was season dependent. Zagunao catchment was more sensitive to temperature rise in the non-growing season but more sensitive to precipitation change in the growing season. Snow melting-oriented runoff reduction due to climate change is perhaps responsible for the unusual forest–water relationship in UMR basin.


2019 ◽  
Vol 12 (3) ◽  
pp. 145 ◽  
Author(s):  
Epyk Sunarno ◽  
Ramadhan Bilal Assidiq ◽  
Syechu Dwitya Nugraha ◽  
Indhana Sudiharto ◽  
Ony Asrarul Qudsi ◽  
...  

2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


2020 ◽  
Vol 38 (2A) ◽  
pp. 255-264
Author(s):  
Hanan A. R. Akkar ◽  
Sameem A. Salman

Computer vision and image processing are extremely necessary for medical pictures analysis. During this paper, a method of Bio-inspired Artificial Intelligent (AI) optimization supported by an artificial neural network (ANN) has been widely used to detect pictures of skin carcinoma. A Moth Flame Optimization (MFO) is utilized to educate the artificial neural network (ANN). A different feature is an extract to train the classifier. The comparison has been formed with the projected sample and two Artificial Intelligent optimizations, primarily based on classifier especially with, ANN-ACO (ANN training with Ant Colony Optimization (ACO)) and ANN-PSO (training ANN with Particle Swarm Optimization (PSO)). The results were assessed using a variety of overall performance measurements to measure indicators such as Average Rate of Detection (ARD), Average Mean Square error (AMSTR) obtained from training, Average Mean Square error (AMSTE) obtained for testing the trained network, the Average Effective Processing Time (AEPT) in seconds, and the Average Effective Iteration Number (AEIN). Experimental results clearly show the superiority of the proposed (ANN-MFO) model with different features.


Sign in / Sign up

Export Citation Format

Share Document