scholarly journals Effect of Alkaline Treatment on The Mechanical Properties of Pineapple Leaf Fiber Composite Material

Author(s):  
M Febriyan Baruna Putra ◽  
Delima Yanti Sari ◽  
Hendri Nurdin ◽  
Rodesri Mulyadi

Utilization of natural fiber waste, especially pineapple dau fiber, is a major concern and continues to be developed to utilize and optimize plantation waste as a material that is more environmentally friendly, energy efficient and inexpensive. The purpose of this study was to determine the effect of alkaline treatment on the mechanical properties of pineapple leaf fiber composite material as an appropriate alternative material. The method in this research is the experimental method, where the research was carried out by giving variations in the percentage of alkaline 10% and 20%. The results of the research on the composite material of pineapple leaf fiber using tensile testing showed that giving alkaline treatment with a percentage of 20% made the fiber stronger but brittle. In addition, the orientation direction and immersion time also affect the tensile strength of the fibers. Pemanfaatan limbah serat alam khususnya serat dau nanas menjadi bahan alternatif menjadi perhatian utama serta terus dikembangkan guna memanfaatkan dan mengoptimalkan limbah perkebunan sebagai bahan material yang lebih ramah lingkungan, hemat energi, dan murah. Tujuan penelitian ini untuk mengetahui pengaruh perlakuan alkali terhadap sifat mekanik material komposit serat daun nanas sebagai bahan alternatif tepat guna. Metode dalam penelitian ini yaitu metode eksperimen, dimana penelitian dilakukan dengan pemberian variasi persentase alkali 10% dan 20%. Hasil penelitian material komposit serat daun nanas dengan menggunakan pengujian tarik menunjukkan bahwa pemberian perlakuan alkali dengan persentase 20% membuat serat menjadi lebih kuat namun bersifat getas. Selain itu, arah orientasi dan waktu perendaman juga mempengaruhi kekuatan tarik serat.

2015 ◽  
Vol 77 (21) ◽  
Author(s):  
Ayu Natasya Kasim ◽  
Mohd Zulkefli Selamat ◽  
Nabila Aznan ◽  
Siti Norbaya Sahadan ◽  
Mohd Ahadlin Mohd Daud ◽  
...  

Natural fibers have become an important issue in the development of fiber reinforced polymer (FRP) composite to resolve the current ecological and environmental problems. Among the many types of natural fibers that are available, pineapple leaf fiber (PLF) was selected as the natural fiber used in this study due to comparatively better mechanical properties, ease of availability and low cost. In this work, the effects of pineapple leaf fiber (PLF) loading on the properties of PLF/polypropylene (PP) composites was studied. The sample of composites was fabricated with five different fiber loading of PLF (30, 40, 50, 60 and 70 wt.%). An alkaline treatment was conducted to enhance the PLF properties. The fabrication was made by compression molding technique with random orientation of PLF. From the experimental study, the results revealed that the voids percentage and interfacial bonding between the PLF and PP affected the mechanical properties of the PLF/PP composite. Based on the results of tensile stress, hardness and density, it can be concluded that the PLF/PP composite with the composition ratio of 30/70 wt.% has shown the best mechanical properties compared to other composition ratios (40/60, 50/50, 60/40 and 70/30 wt.%), which are 16.71 MPa, 62.83 Shore-D and 0.93 g/cm³ respectively.


2018 ◽  
Vol 150 ◽  
pp. 04008 ◽  
Author(s):  
Mohd Zulkefli Selamat ◽  
Muhammad Syazwan Zhafri Tahir ◽  
Ayu Natasya Kasim ◽  
Sivakumar Dharmalingam ◽  
Azma Putra ◽  
...  

Pineapple leaf fiber (PLF) is one of the natural fibers that abundantly can be found in Malaysia, but the usage of the pineapple plant is limited only on their fruit and the other parts to be a waste. In this study, PLF is used as the reinforcement material and starch (SH) used as the matrix or binder. Both materials were combined with several compositions ratio (weight percentage) of PLF/SH composites which are 50PLF/50SH, 60PLF/40SH and 70PLF/30SH. Before undergo the fabrication process, the fiber has gone through an alkaline treatment to increase the strength of the fiber and chopped with an approximate size range from 0.5 mm to 5 mm. Besides that, SH powder is sieved to gain several particulate sizes which are 75 μm, 100 μm and 250 μm. The related tests such as flexural, hardness, density tests and macrostructure analysis have been done to determine their mechanical properties of composite. Based on the results, the sample with composition of 70PL/30SH with 75 μm has shown the highest result for flexural stress which is 14.49 MPa. While, the composite with the same composition of 70PLF/30SH with particulate size SH of 250 μm has shown the highest result in the hardness of 67 Shore-D and density of 1.36 g/cm3 respectively.


Sign in / Sign up

Export Citation Format

Share Document