Based on BP nerve Research on the Stability Criterion of Fractional Differential Equations of Network Algorithm

2020 ◽  
Vol 29 (3) ◽  
Author(s):  
Yutian Ma ◽  
Wenwen Li
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Amar Benkerrouche ◽  
Mohammed Said Souid ◽  
Kanokwan Sitthithakerngkiet ◽  
Ali Hakem

AbstractIn this manuscript, we examine both the existence and the stability of solutions to the implicit boundary value problem of Caputo fractional differential equations of variable order. We construct an example to illustrate the validity of the observed results.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
H. Saberi Najafi ◽  
A. Refahi Sheikhani ◽  
A. Ansari

We analyze the stability of three classes of distributed order fractional differential equations (DOFDEs) with respect to the nonnegative density function. In this sense, we discover a robust stability condition for these systems based on characteristic function and new inertia concept of a matrix with respect to the density function. Moreover, we check the stability of a distributed order fractional WINDMI system to illustrate the validity of proposed procedure.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Khalid Hattaf

This paper aims to study the stability of fractional differential equations involving the new generalized Hattaf fractional derivative which includes the most types of fractional derivatives with nonsingular kernels. The stability analysis is obtained by means of the Lyapunov direct method. First, some fundamental results and lemmas are established in order to achieve the goal of this study. Furthermore, the results related to exponential and Mittag–Leffler stability existing in recent studies are extended and generalized. Finally, illustrative examples are presented to show the applicability of our main results in some areas of science and engineering.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Rozi Gul ◽  
Muhammad Sarwar ◽  
Kamal Shah ◽  
Thabet Abdeljawad ◽  
Fahd Jarad

This article studies a class of implicit fractional differential equations involving a Caputo-Fabrizio fractional derivative under Dirichlet boundary conditions (DBCs). Using classical fixed-point theory techniques due to Banch’s and Krasnoselskii, a qualitative analysis of the concerned problem for the existence of solutions is established. Furthermore, some results about the stability of the Ulam type are also studied for the proposed problem. Some pertinent examples are given to justify the results.


2013 ◽  
Vol 2013 ◽  
pp. 1-20 ◽  
Author(s):  
Shui-Ping Yang ◽  
Ai-Guo Xiao

We discuss the cubic spline collocation method with two parameters for solving the initial value problems (IVPs) of fractional differential equations (FDEs). Some results of the local truncation error, the convergence, and the stability of this method for IVPs of FDEs are obtained. Some numerical examples verify our theoretical results.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 896
Author(s):  
Snezhana Hristova ◽  
Amar Benkerrouche ◽  
Mohammed Said Souid ◽  
Ali Hakem

A boundary value problem for Hadamard fractional differential equations of variable order is studied. Note the symmetry of a transformation of a system of differential equations is connected with the locally solvability which is the same as the existence of solutions. It leads to the necessity of obtaining existence criteria for a boundary value problem for Hadamard fractional differential equations of variable order. Also, the stability in the sense of Ulam–Hyers–Rassias is investigated. The results are obtained based on the Kuratowski measure of noncompactness. An example illustrates the validity of the observed results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mohammad Shahbazi Asl ◽  
Mohammad Javidi ◽  
Yubin Yan

AbstractIn this paper, two novel high order numerical algorithms are proposed for solving fractional differential equations where the fractional derivative is considered in the Caputo sense. The total domain is discretized into a set of small subdomains and then the unknown functions are approximated using the piecewise Lagrange interpolation polynomial of degree three and degree four. The detailed error analysis is presented, and it is analytically proven that the proposed algorithms are of orders 4 and 5. The stability of the algorithms is rigorously established and the stability region is also achieved. Numerical examples are provided to check the theoretical results and illustrate the efficiency and applicability of the novel algorithms.


2020 ◽  
Vol 65 (4) ◽  
pp. 495-502
Author(s):  
Paulo M. Guzman ◽  
Luciano M. Lugo Motta Bittencurt ◽  
Juan E. Napoles Valdes

In this note we obtain sufficient conditions under which we can guarantee the stability of solutions of a fractional differential equations of non conformable type and we obtain some fractional analogous theorems of the direct Lyapunov method for a given class of equations of motion.


Author(s):  
Ali El Mfadel ◽  
Said Melliani ◽  
M’hamed Elomari

In this paper, we present and establish a new result on the stability analysis of solutions for fuzzy nonlinear fractional differential equations by extending Lyapunov’s direct method from the fuzzy ordinary case to the fuzzy fractional case. As an application, several examples are presented to illustrate the proposed stability result.


Sign in / Sign up

Export Citation Format

Share Document