INCREASING THE SIGNAL PRESENTATION ACCURACY DURING DIGITAL-TO-ANALOG CONVERSION

Author(s):  
V.M. Galkin ◽  
L.N. Mazunova
1969 ◽  
Vol 12 (1) ◽  
pp. 199-209 ◽  
Author(s):  
David A. Nelson ◽  
Frank M. Lassman ◽  
Richard L. Hoel

Averaged auditory evoked responses to 1000-Hz 20-msec tone bursts were obtained from normal-hearing adults under two different intersignal interval schedules: (1) a fixed-interval schedule with 2-sec intersignal intervals, and (2) a variable-interval schedule of intersignal intervals ranging randomly from 1.0 sec to 4.5 sec with a mean of 2 sec. Peak-to-peak amplitudes (N 1 — P 2 ) as well as latencies of components P 1 , N 1 , P 2 , and N 2 were compared under the two different conditions of intersignal interval. No consistent or significant differences between variable- and fixed-interval schedules were found in the averaged responses to signals of either 20 dB SL or 50 dB SL. Neither were there significant schedule differences when 35 or 70 epochs were averaged per response. There were, however, significant effects due to signal amplitude and to the number of epochs averaged per response. Response amplitude increased and response latency decreased with sensation level of the tone burst.


2020 ◽  
pp. 15-23
Author(s):  
V. M. Grechishnikov ◽  
E. G. Komarov

The design and operation principle of a multi-sensor Converter of binary mechanical signals into electrical signals based on a partitioned fiber-optic digital-to-analog Converter with a parallel structure is considered. The digital-to-analog Converter is made from a set of simple and technological (three to five digit) fiber-optic digital-to-analog sections. The advantages of the optical scheme of the proposed. Converter in terms of metrological and energy characteristics in comparison with single multi-bit converters are justified. It is shown that by increasing the number of digital-analog sections, it is possible to repeatedly increase the information capacity of a multi-sensor Converter without tightening the requirements for its manufacturing technology and element base. A mathematical model of the proposed Converter is developed that reflects the features of its operation in the mode of sequential time conversion of the input code vectors of individual fiber-optic sections into electrical analogues and the formation of the resulting output code vector.


2011 ◽  
Vol 70 (2) ◽  
pp. 159-169
Author(s):  
A. N. Rudyakova ◽  
A. Yu. Lipinsky ◽  
V. V. Danilov

Sign in / Sign up

Export Citation Format

Share Document