scholarly journals Some Divisibility Properties of Lucas Numbers

Author(s):  
Adem ŞAHİN ◽  
Sadettin KARAGÖL
2013 ◽  
Vol 97 (540) ◽  
pp. 461-464
Author(s):  
Jawad Sadek ◽  
Russell Euler

Although it is an old one, the fascinating world of Fibonnaci numbers and Lucas numbers continues to provide rich areas of investigation for professional and amateur mathematicians. We revisit divisibility properties for t0hose numbers along with the closely related Pell numbers and Pell-Lucas numbers by providing a unified approach for our investigation.For non-negative integers n, the recurrence relation defined bywith initial conditionscan be used to study the Pell (Pn), Fibonacci (Fn), Lucas (Ln), and Pell-Lucas (Qn) numbers in a unified way. In particular, if a = 0, b = 1 and c = 1, then (1) defines the Fibonacci numbers xn = Fn. If a = 2, b = 1 and c = 1, then xn = Ln. If a = 0, b = 1 and c = 2, then xn = Pn. If a =b = c = 2, then xn = Qn [1].


1982 ◽  
Vol 34 (1) ◽  
pp. 196-215 ◽  
Author(s):  
D. D. Anderson ◽  
David F. Anderson

Let R = ⊕α∊гRα be an integral domain graded by an arbitrary torsionless grading monoid Γ. In this paper we consider to what extent conditions on the homogeneous elements or ideals of R carry over to all elements or ideals of R. For example, in Section 3 we show that if each pair of nonzero homogeneous elements of R has a GCD, then R is a GCD-domain. This paper originated with the question of when a graded UFD (every homogeneous element is a product of principal primes) is a UFD. If R is Z+ or Z-graded, it is known that a graded UFD is actually a UFD, while in general this is not the case. In Section 3 we consider graded GCD-domains, in Section 4 graded UFD's, in Section 5 graded Krull domains, and in Section 6 graded π-domains.


2020 ◽  
Vol 70 (3) ◽  
pp. 641-656
Author(s):  
Amira Khelifa ◽  
Yacine Halim ◽  
Abderrahmane Bouchair ◽  
Massaoud Berkal

AbstractIn this paper we give some theoretical explanations related to the representation for the general solution of the system of the higher-order rational difference equations$$\begin{array}{} \displaystyle x_{n+1} = \dfrac{1+2y_{n-k}}{3+y_{n-k}},\qquad y_{n+1} = \dfrac{1+2z_{n-k}}{3+z_{n-k}},\qquad z_{n+1} = \dfrac{1+2x_{n-k}}{3+x_{n-k}}, \end{array}$$where n, k∈ ℕ0, the initial values x−k, x−k+1, …, x0, y−k, y−k+1, …, y0, z−k, z−k+1, …, z1 and z0 are arbitrary real numbers do not equal −3. This system can be solved in a closed-form and we will see that the solutions are expressed using the famous Fibonacci and Lucas numbers.


1989 ◽  
Vol 03 (14) ◽  
pp. 1071-1085 ◽  
Author(s):  
L. A. BURSILL ◽  
GEORGE RYAN ◽  
XUDONG FAN ◽  
J. L. ROUSE ◽  
JULIN PENG ◽  
...  

Observations of the sunflower Helianthus tuberosus reveal the occurrence of both Fibonacci and Lucas numbers of visible spirals (parastichies). This species is multi-headed, allowing a quantitative study of the relative abundance of these two types of phyllotaxis. The florets follow a spiral arrangement. It is remarkable that the Lucas series occurred, almost invariably, in the first-flowering heads of individual plants. The occurrence of left-and right-handed chirality was found to be random, within experimental error, using an appropriate chirality convention. Quantitative crystallographic studies allow the average growth law to be derived (r = alτ−1; θ = 2πl/(τ + 1), where a is a constant, l is the seed cell number and τ is the golden mean [Formula: see text]). They also reveal departures from classical theoretical models of phyllotaxis, taking the form of persistent oscillations in both divergence angle and radius. The experimental results are discussed in terms of a new theoretical model for the close-packing of growing discs. Finally, a basis for synthesis of (inorganic) spiral lattice structures is proposed.


1994 ◽  
Vol 63 (208) ◽  
pp. 799 ◽  
Author(s):  
P. Moree ◽  
H. J. J. Te Riele ◽  
J. Urbanowicz

1997 ◽  
Vol 25 (7) ◽  
pp. 15-22 ◽  
Author(s):  
R.K. Raina ◽  
H.M. Srivastava
Keyword(s):  

2021 ◽  
Vol 21 (2) ◽  
pp. 461-478
Author(s):  
HIND MERZOUK ◽  
ALI BOUSSAYOUD ◽  
MOURAD CHELGHAM

In this paper, we will recover the new generating functions of some products of Tribonacci Lucas numbers and orthogonal polynomials. The technic used her is based on the theory of the so called symmetric functions.


Sign in / Sign up

Export Citation Format

Share Document