Reduced Cross-Polarization Patch Antenna with Optimized Impedance Matching Using a Complimentary Split Ring Resonator and Slots as Defected Ground Structure

2021 ◽  
Vol 36 (6) ◽  
pp. 718-725
Author(s):  
Narayanasamy RajeshKumar ◽  
Palani Sathya ◽  
Sharul Rahim ◽  
Akaa Eteng

An innovative method is proposed to improve the cross-polarization performance and impedance matching of a microstrip antenna by integrating a complimentary split ring resonator and slots as a defected ground structure. An equivalent circuit model (ECM) enables the design take into consideration the mutual coupling between the antenna patch and the Defected Ground Structure. The input impedance and surface current density analysis confirms that the integration of a CSRR within a rectangular microstrip patch antenna leads to uniform comparative cross-polarization level below 40 dB in the H-plane, over an angular range of ± 50°. Introducing parallel slots, as well, leads to a reduction of spurious antenna radiation, thereby improving the impedance matching. Measurements conducted on a fabricated prototype are consistent with simulation results. The proposed antenna has a peak gain of 4.16 dB at 2.6 GHz resonating frequency, and hence is good candidate for broadband service applications.

Author(s):  
Aruna R ◽  
Sreegiri S S

In this paper presents the design of a circular microstrip fractal antenna (CMFA) loaded with parasitic edge-coupled (EC) split ring resonators (SRR) and defected ground structure (DGS). The basic resonant structure is a circular patch antenna designed at 3.2 GHz on FR4 substrate with relative permittivity 4.4, and 1.6 mm thickness. One iteration of circular patch and slots is employed to form it fractal and so as to attain multiband performance, the antenna is inset fed by a 50? microstrip line. Further the work is extended to demonstrate the effect of placing split ring resonator to particular position of substrate, improves the impedance matching leading to improved bandwidth. In addition L shaped defected ground structures are used to improve the antenna performance. . A comparison between fractal antenna with and without SRRs and DGS is made and the results verifies that a better gain improvement and return loss. The dimensions of the antenna are 45 mm x 45 mm and it can be used for ultra wide band (UWB) applications.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Gnanasekaran Revathi ◽  
Savarimuthu Robinson

Abstract In this paper, a metamaterial bandpass filter using Split Ring Resonators (SRR) is designed, analyzed, and developed for WLAN applications at 2.4 GHz frequency band. Here, metamaterial bandpass filters with and without Defected Ground Structure (DGS) are designed, analyzed and compared. The filter structure shows a considerable size reduction with 50% fractional bandwidth, quality factor of 2 and wide bandwidth. The simulation results of the proposed filters offered good insertion loss and return loss response. The filters have been modeled, fabricated and their performance has been evaluated using the Method Of Moment (MOM) based electromagnetic simulator IE3D. The dimensions of the proposed filter is 20 × 9 × 1.6 mm which is considerably reduced. The simulated and measured results projected that the proposed metamaterial filters are well suited for WLAN applications.


Sign in / Sign up

Export Citation Format

Share Document