surface current density
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 17)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Jitendra Kumar Singh ◽  
Gauri Shenker Seth

The focus is in this article is to scrutinize the simultaneous significances of magnetic diffusion, thermo-diffusion and angular location on the hydromagnetic flow of an elastico-viscous fluid over an inclined heated plane with magnetized wall. The flow medium is considered to be uniformly permeable (Darcy-Brinkman porous medium) and the flow of the fluid is considerably affected due to the appearance of a strong magnetic field in the direction normal to the flow surface. The significances of Hall current, induced magnetic field and Coriolis force on flow nature is also included in the study. The leading non-dimensionalized equations are explored by regular perturbation analysis. Ultimately, the expressions for velocity field, induced magnetic field, temperature and concentration are obtained. We further derived the surface skin friction, surface current density, heat and mass fluxes. The computation of results is performed with the aid of Mathematica software and results are presented in graphical and tabular forms for distinct flow impacting parameters. Numerical simulation explores that mass diffusion factor brings growth in the fluid velocity, temperature and normal induced magnetic field while it reduces the main induced magnetic field. Magnetic diffusion develops the primary flow and primary induced magnetic field and lessens the normal flow and normal induced magnetic field. Inclination angle of the heated plane upgrades primary induced magnetic field while downgrading normal induced magnetic field.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8581
Author(s):  
I Made Yulistya Negara ◽  
I. G. N. Satriyadi Hernanda ◽  
Dimas Anton Asfani ◽  
Mira Kusuma Wardani ◽  
Bonifacius Kevin Yegar ◽  
...  

Polymer is an insulating substance that has become increasingly popular in recent years due to its benefits. Light density, superior dielectric and thermal properties, and water-resistant or hydrophobic properties are only a few of the benefits. The presence of impurities or pollutants on the insulator’s surface lowers its dielectric capacity, which can lead to current leakage. The influence of seawater and fly ash pollutants on the distribution of the electric field and the current density of the insulator was simulated in this study. The finite element method was used to execute the simulation (FEM). Polymer insulators are subjected to testing in order to gather current leakage statistics. The tested insulator is exposed to seawater pollution, which varies depending on the equivalent salt density deposit value (ESDD). The pollutant insulator for fly ash varies depending on the value of non-soluble deposit density (NSDD). The existence of a layer of pollutants increased the value of the electric field and the value of the surface current density, according to the findings. Both in simulation and testing, the ESDD value of seawater pollutants and the NSDD value of fly ash contaminants influenced the value of the leakage current that flowed. The greater the ESDD and NSDD values are, the bigger the leakage current will be.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sebastian Littin ◽  
Feng Jia ◽  
Philipp Amrein ◽  
Maxim Zaitsev

The design of gradient coils is sometimes perceived as complex and counterintuitive. However, a current density is connected to a stream function in fact by a simple relation. Here we present an intuitive open source code collection to derive stream functions from current densities on simple surface geometries. Discrete thin wires, oriented orthogonally to the main magnetic field direction are used to describe a surface current density. An inverse problem is solved and stream functions are derived to find coil designs in the current and stream function domains. The flexibility of the design method is demonstrated by deriving gradient coil designs on several different surface topologies. This collection is primarily intended for teaching, as well as for demonstrating all gradient coil design steps with openly available software tools.


Author(s):  
Дарья Владимировна Добролюбова ◽  
Элла Петровна Шурина

Рассматриваются особенности применения модифицированной вариационной постановки векторного метода конечных элементов (ВМКЭ), основанной на замене тонких сильнопроводящих объектов токонесущими поверхностями, для моделирования гармонического электрического поля в областях с криволинейными экранами при различном типе возбуждения поля. Исследуется применимость модифицированной вариационной постановки в широком диапазоне частот Purpose. The paper addresses applicability of the modified variational formulation of vector FEM for the harmonic electric field to the media with cylindrical shields. Thin highly conductive objects are treated as surfaces with the equivalent surface current density. We consider the excitation of the field by a local source (current loop) located either inside or outside the cylindrical shield. Methodology. The simulations are carried out on unstructured tetrahedral meshes. Since the modified variational formulation treats thin highly conductive objects as surfaces, only the surface of a cylinder is discretized. The results yielded by the modified variational formulation are compared with the results of the classic vector FEM. Findings. For the frequency range between 100 KHz and 100 MHz, the modified variational formulation provides correct results when the field source is located outside the cylindrical shield. The modified variational formulation reduces computational cost, since the volume of the thin shield is not discretized. When the field source is located inside the shield, the modified variational formulation gives valid results only in the proximity of the source. Originality/value. The limitations for the application of the reduced variational formulation for the modelling of harmonic electric field in the media with hollow cylindrical shields are investigated


2021 ◽  
Vol 36 (6) ◽  
pp. 718-725
Author(s):  
Narayanasamy RajeshKumar ◽  
Palani Sathya ◽  
Sharul Rahim ◽  
Akaa Eteng

An innovative method is proposed to improve the cross-polarization performance and impedance matching of a microstrip antenna by integrating a complimentary split ring resonator and slots as a defected ground structure. An equivalent circuit model (ECM) enables the design take into consideration the mutual coupling between the antenna patch and the Defected Ground Structure. The input impedance and surface current density analysis confirms that the integration of a CSRR within a rectangular microstrip patch antenna leads to uniform comparative cross-polarization level below 40 dB in the H-plane, over an angular range of ± 50°. Introducing parallel slots, as well, leads to a reduction of spurious antenna radiation, thereby improving the impedance matching. Measurements conducted on a fabricated prototype are consistent with simulation results. The proposed antenna has a peak gain of 4.16 dB at 2.6 GHz resonating frequency, and hence is good candidate for broadband service applications.


2021 ◽  
Vol 35 (12) ◽  
pp. 1513-1518
Author(s):  
Tahir Bashir ◽  
Han Xiong ◽  
Abdul Aziz ◽  
Muhammad Qureshi ◽  
Haroon Ahmed ◽  
...  

In this paper, a single-layer compound unit element is proposed for reflectarray antenna design operating in Ka-band (26.5-29.5GHz) at the center frequency of 28GHz. A systematic study on the performance of a compound unit element is examined first. The structure of the proposed unit element is a unique combination of two different shape simple patches i.e. cross dipole and square patches. The desired phase range is achieved due to the multi-resonance of both patch elements with a single layer without any air-gap. The compound unit element is simulated by computer models of CST Microwave studio based on the Floquet approach (infinite periodic approach) and it has achieved 348.589o reflection phase range. Furthermore, the analysis of the reflection phase range, S-curve gradient, reflection magnitude, fabrication tolerance, and surface current density is also simulated and demonstrated. Based on the remarkable performance, the proposed element can be considered as the best element of single-beam or multi-beam reflectarray antenna design for 5G applications.


2021 ◽  
Vol 23 (4) ◽  
pp. 36-47
Author(s):  
Ivan S. Polyansky ◽  
Dmitry E. Stepanov ◽  
Dmitry K. Ketoh ◽  
Vyacheslav A. Shevchenko

In the article, the features of using the barycentric method in solving problems of electrodynamic analysis of mirror antennas are considered. The solution of the internal problem of electrodynamics is the basis of the study. The problem of electrodynamic analysis of a mirror antenna is formulated in the classical representation of the problem of diffraction of an electromagnetic wave on a system of infinitely thin perfectly conducting screens of arbitrary shape and reduced to a system of integro-differential equations. The solution of the latter is performed numerically in the projection formulation of the Galerkin method when determining the approximation of the desired surface current density function in the system of global basis functions formed in the approximation of the barycentric method for the analyzed screen. The integral representation of the electromagnetic field of the mirror antenna, taking into account the properties of the introduced basic functions, is given. Thefeatures of the algorithmic implementation of the developed solutions are clarified. The efficiency and comparative preference of the use of the barycentric method in the problems of electrodynamic analysis of mirror antennas are tested on test examples.


Author(s):  
Md. Abdullah Al Rakib ◽  
◽  
Shamim Ahmad ◽  
Tareq Mohammad Faruqi ◽  
Mainul Haque ◽  
...  

This paper focuses to design a compact (110mm³) Ultra-Wide Band (UWB) (3.1GHz to 10.6GHz) antenna, which covers almost the whole 10dB impedance matching bandwidth of the UWB range. Two of the main specialties of this article over other related articles are its antenna’s wider bandwidth (approx. 7.3GHz) and antenna’s simulation environment. No other papers consider such a realistic model to simulate their antenna, before. Due to its wider bandwidth, this antenna can be employed in the Wireless Capsule Endoscopy (WCE) system, which mainly requires a high-speed real-time data transfer-capable antenna. The antenna was examined inside simplified human Gastrointestinal (GI) tract phantoms (Colon, Esophagus, Small Intestine and Stomach) as well as the human Voxel GI tract model by maintaining proper tissue properties for the sake of accurate parametric results. Biocompatible material polyimide was used to construct the capsule wall to fulfill the system’s biocompatibility. In the result analysis part, the proposed antenna’s SAR (Specific Absorption Rate) or electromagnetic energy amount, consumed by near-side body tissue was considered and found in the acceptable region, according to Federal Communication Commission (FCC)’s regulation. Also, other crucial antenna parameters such as VSWR, reflection coefficient, radiation characteristics, efficiencies, directivity and surface current density were adoptable compare to other related articles. The Finite Integration Technique (FIT) of CST Microwave Studio Suite 2020 was used to investigate the antenna parameters.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 711-719
Author(s):  
Kashif Rashid ◽  
Muhammad Azeem ◽  
Byungtaek Kim

In this paper, a field winding vernier (FWV) machine is proposed to get higher back electromotive force (EMF) than surface permanent magnet vernier (SPMV) machine. First, the magneto motive force (MMF) equation of FWV machine is derived to obtain the requisite field current to produce the same back EMF as SPMV machine. Using the derived equation, the surface current density is also estimated and compared with the maximum allowable current density to examine the possibility of improving the back EMF of the FWV machine and find the slot-pole combination that is advantageous for the FWV structure. Using the obtained information, three models of SPMV and FWV machines are designed, finite element analysis are performed, and it is verified that proposed FWV machine has the capability of producing higher back EMF than SPMV machine.


2020 ◽  
Vol 4 (394) ◽  
pp. 137-142
Author(s):  
Andrei Ya. Lapovok ◽  
Roman Ya. Nizkiy

Object and purpose of research. Calculation of the surface current density needed to compensate magnetic signature of thin ferromagnetic shell. Materials and methods. Numerical methods for boundary integral equations. Main results. Numerical solutions are considered for the densities of the inner and outer current layers which compensate external magnetostatic signature of closed ferromagnetic shells of arbitrary shape. The effect of mesh size and surface magnetism approximation upon the compensation error was investigated on test models. Conclusion. The results of the research can be used to optimize the location of degaussing coils aboard offshore objects (the geometry is taken into account).


Sign in / Sign up

Export Citation Format

Share Document