scholarly journals COMPARATIVE STUDY ON ANALYSIS OF TELECOM TOWER USING INDIA AND AMERICAN STANDARDS

Author(s):  
Srinivas Tanuku ◽  
K. Rama Mohana Rao ◽  
B. Pandu Rangarao

Self-supporting lattice tower are being effective structural system by considering simple, light weight, easy fabrication and installation for supporting telecom equipment at elevated heights. With increase in demand of lattice towers, a critical review on approach for analysis is highly essential to ensure reliable and safe structures. In this paper, a comparative study is taken up on methodologies followed in both national standards (India, America) for assessment of wind loads on bare tower, linear accessories, discrete accessories along with design resistance of members and connections for Two different configurations – Square angular tower, Triangular Hybrid Tower. From the detailed analysis, it is concluded that, American standard (ANSI/TIA-222H) is using Ultimate windspeed for calculation of wind loads based on risk category of structure along with strength reduction factors based on criticality of components compared to Indian Standards (IS 875(Part 3)-2015, IS 802) which resulted lesser wind load on structure i.e., 30% in Square Tower (Oblique wind direction) and 23% in Triangular Hybrid Tower using ANSI/TIA-222H. Also, no major difference observed for calculation of member capacity and connection. Therefore, it is concluded that Tower weights approximately reduces by 10-15% based on Tower configuration using ANSI/TIA-222H compared to Indian Standards

2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Nicola Longarini ◽  
Luigi Cabras ◽  
Marco Zucca ◽  
Suvash Chapain ◽  
Aly Mousaad Aly

The behavior of a very slender building is investigated under wind loads, to satisfy both strength and serviceability (comfort) design criteria. To evaluate the wind effects, wind tunnel testing and structural analysis were conducted, by two different procedures: (i) Pressure Integration Method (PIM), with finite element modeling, and (ii) High Frequency Force Balance (HFFB) technique. The results from both approaches are compared with those obtained from Eurocode 1 and the Italian design codes, emphasizing the need to further deepen the understanding of problems related to wind actions on such type of structure with high geometrical slenderness. In order to reduce wind induced effects, structural and damping solutions are proposed and discussed in a comparative study. These solutions include (1) height reduction, (2) steel belts, (3) tuned mass damper, (4) viscous dampers, and (5) orientation change. Each solution is studied in detail, along with its advantages and limitations, and the reductions in the design loads and structural displacements and acceleration are quantified. The study shows the potential of damping enhancement in the building to mitigate vibrations and reduce design loads and hence provide an optimal balance among resilience, serviceability, and sustainability requirements.


2018 ◽  
Vol 57 (4) ◽  
pp. 3623-3639 ◽  
Author(s):  
Nourhan Sayed Fouad ◽  
Gamal Hussien Mahmoud ◽  
Nasr Eid Nasr
Keyword(s):  

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jin Zhang ◽  
Weiao Xu ◽  
Dong Chen ◽  
Chen Zhang

As an important structural system for effectively improving power delivered to the load (PDL) and power transmission range, multiple-transmitter (TX) and single-receiver (RX) wireless power transfer (WPT) system is gaining more and more attention in both academic circles and the industrial fields. Based on the Lagrange multiplier method, this paper first provides a current- and voltage-optimized circuit scheme to maximize the PDL of the multiple-TX WPT system. Then, for a determined WPT system, the current-optimized circuit scheme is proposed to maximize the PDL effectively with constant source voltages and feeding currents for TXs. While voltage-optimized circuit scheme can effectively adjust the source voltages and feeding currents and maintain the same level of input power and PDL as a current-optimized solution. Through comparative study, the voltage-optimized solution shows its advantages in adjustable source voltage and feeding current without any degradation of PDL. Finally, the theoretical analysis results are confirmed by the results of full-wave electromagnetic simulation.


Sign in / Sign up

Export Citation Format

Share Document