scholarly journals A COMPARATIVE STUDY OF OMRF & SMRF STRUCTURAL SYSTEM FOR TALL & HIGH RISE BUILDINGS SUBJECTED TO SEISMIC LOAD

2013 ◽  
Vol 02 (09) ◽  
pp. 239-250 ◽  
Author(s):  
G.V.S.Sivaprasad .
2012 ◽  
Vol 256-259 ◽  
pp. 2067-2073
Author(s):  
Xiang Dong Zhang ◽  
Pu Wang ◽  
Jian Guan

Analysis of the structure characteristics of the General Hospital of Fuxin Mining Group, through the instrument observation and use the finite element software for structural modeling, modal analysis show that the quality of structural system, the stiffness is more evenly distributed the structure of the torsional capacity to meet the requirements. Through input into Tianjin wave, analysis the dynamic characteristics of the model, the results show that: to tall wall-frame structure, shear wall is very restriction of lateral displacement in the central and bottom, stronger than upper structure on lateral displacement limit ability.


2005 ◽  
Vol 32 (2) ◽  
pp. 314-328 ◽  
Author(s):  
Young K Ju ◽  
Do-Hyun Kim ◽  
Sang-Dae Kim

The number of high-rise buildings has greatly increased in Korea, and storey height is a significant component of tall residential buildings due to the limited city area. To reduce storey height, the wide beam has been adopted in some projects in Seoul such as Trump World, Galleria Palace, and Richencia. The joints between the wide beam and the core wall were too narrow to place the reinforcement, however. This paper investigates a newly developed structural system called the innovative, technical, economical, and convenient hybrid system (iTECH system). The iTECH system has an asymmetric steel assembly with web openings, where the top plate is welded on top of inverted structural "tees" whose cut is referred to as a "honeycomb" type. Both sides of the web and the slab are filled with cast-in-place concrete. The shear capacity was experimentally evaluated and verified, with parameters determined by factors that shared the shear strength of the iTECH beam. The steel web, inner concrete panel, and outer concrete panel contributed to the shear strength of the iTECH beam. The shear stirrup did not contribute much to the shear strength, however, and therefore a design equation using the steel web and inner concrete panel was suggested.Key words: composite beam, shear capacity, monotonic test, high-rise building.


2012 ◽  
Vol 446-449 ◽  
pp. 3670-3673
Author(s):  
Hooi Min Yee ◽  
Siti Isma Hani Ismail

Wall-slab structural system is a system suitable for use in the field of high-rise building where the main load resisting system is in the form rigidly connected wall slab member. Concrete vertical walls may serve both architecturally partitions and structurally to carry gravity and lateral loading. Moment transfer of joint is an important aspect for proper structurally functioning of wall-slab system. Hence, the main aim of this study is to investigate experimentally the effect of reinforcement details in the wall on bending capacity for support stiffness in wall-slab system for residential project in Malaysia. A total of six wall specimens were tested based on the specification given by the project contractor. Three of this specimens consisted single layer of rebar while another three specimen consisted of double layer of rebar. The size of the wall-slab’s specimens is 1000mm in length (L), 1080mm in width (W), 1000mm in height (H) and 80mm in thickness (T). The average concrete strength was 23.49MPa with Grade 30N/mm2 and the average yield strength of R5 bar was 817MPa. The predicted bending capacity at failure is in the range from 5.36kNm to 7.12kNm, depending on actual concrete cover. The bending capacity at failure for single layered of rebar in wall for specimen 1, 2 and 3 were found to be 3.59kNm, 3.81kNm and 3.15kNm, respectively. The bending capacity at failure for double layered of rebar in wall for specimen 1, 2 and 3 were 5.50kNm, 6.31kNm and 7.00kNm, respectively. The average percentage difference in stiffness of double layered of rebar in wall based on load-deflection curve obtained is in the range from 116.17% to 289.88% higher than single layered of rebar in wall. Based on the experimental results, specimens consisted of double layered of rebar in wall is found to provide higher bending capacity to the joint of wall-slab structural system in the range from 56.25% to 98.86% compared with single layered of rebar in wall.


2021 ◽  
Author(s):  
Rafael Ruiz ◽  
Leonardo Todisco ◽  
Alfredo Pazos ◽  
Hugo Corres

2018 ◽  
Vol 931 ◽  
pp. 196-199
Author(s):  
Vladimir N. Aksenov ◽  
Nikolay B. Aksenov ◽  
Muhammad V. Aushev

This paper presents the results of the simulation experiment performed in Lira-SAPR. The purpose of the experiment is modal analysis of various structural schemes of the high-rise reinforced concrete frame under pulsation and earthquake action. Calculations have been made for three series of samples, differing in the stiffness ratio of the frame and diaphragm of the scheme (from 20% to 65.9%), considering seismic rating of 7, 8 and 9 magnitude and subsoils of the 1st, 2nd and 3rd categories of seismic activity. It has been established, that the ratio of stiffness influences the distribution of the modal mass. The acceleration of the cover nodes does not depend on the stiffness ratio – they grow as seismic activity of the site increases. Stiffness ratio influences the total reinforcement requirement. This influence is significant in the range of ratio values from 20.5% to 42.5%. Further increase in the stiffness ratio has little influence on the reinforcement requirement.


2019 ◽  
Vol 11 (3) ◽  
pp. 168781401983511
Author(s):  
Seonwoong Kim

The lateral load-resisting system of high-rise buildings in regions of low and moderate seismicity and strong wind such as the typhoon in the Korean peninsula considers the wind load as the governed lateral force so that the practical structural engineer tends to skip the evaluation against the seismic load. This study is to investigate wind-designed steel diagrid buildings located in these regions and check the possibility of the elastic design of them out. To this end, first, the diagrid high-rise buildings were designed to satisfy the wind serviceability criteria specified in KBC 2016. Then, the response spectrum analyses were performed under various slenderness ratio and wind exposures. The analyses demonstrated the good seismic performance of these wind-designed diagrid high-rise buildings because of the significant over-strength induced by the lateral load-resisting system of high-rise buildings. Also, the analysis results showed that the elastic seismic design process of some diagrid high-rise buildings may be accepted based on slenderness ratios in all wind exposures.


Sign in / Sign up

Export Citation Format

Share Document