scholarly journals The effects of various surface treatments on the bond strength between lithium disilicate pressed-ceramics and luting agent

2021 ◽  
Vol 21 (2) ◽  
pp. 23-28
Author(s):  
Takushi Fukuyama ◽  
Naho Hamano ◽  
Hideo Iwashita ◽  
Yuya Tsujimura ◽  
Tota Shimizu ◽  
...  
Author(s):  
Siripan Simasetha ◽  
Awiruth Klaisiri ◽  
Tool Sriamporn ◽  
Kraisorn Sappayatosok ◽  
Niyom Thamrongananskul

Abstract Objective The study aimed to evaluate the shear bond strength (SBS) of lithium disilicate glass-ceramic (LDGC) and resin cement (RC) using different surface treatments. Materials and Methods LDGC blocks (Vintage LD Press) were prepared, etched with 4.5% hydrofluoric acid, and randomly divided into seven groups (n = 10), depending on the surface treatments. The groups were divided as follows: 1) no surface treatment (control), 2) Silane Primer (KS), 3) Signum Ceramic Bond I (SGI), 4) Signum Ceramic Bond I/Signum Ceramic Bond II (SGI/SGII), 5) experimental silane (EXP), 6) experimental silane/Signum Ceramic Bond II (EXP/SGII), and 7) Experimental/Adper Scotchbond Multi-purpose Adhesive (EXP/ADP). The specimens were cemented to resin composite blocks with resin cement and stored in water at 37 °C for 24 hours. The specimens underwent 5,000 thermal cycles and were subjected to the SBS test. Mode of failure was evaluated under the stereo microscope. Statistical Analysis Data were analyzed with Welch ANOVA and Games-Howell post hoc tests (α = 0.05). Results The highest mean SBS showed in group EXP/ADP (45.49 ± 3.37 MPa); however, this was not significantly different from group EXP/SGII (41.38 ± 2.17 MPa) (p ≥ 0.05). The lowest SBS was shown in the control group (18.36 ± 0.69 MPa). This was not significantly different from group KS (20.17 ± 1.10 MPa) (p ≥ 0.05). Conclusions The different surface treatments significantly affected the SBS value between LDGC and RC. The application of pure silane coupling agent with or without the application of an adhesive improved the SBS value and bond quality.


2020 ◽  
Vol 24 (1) ◽  
Author(s):  
Daniele Oliveira da Silva ◽  
Tabata Prado Sato ◽  
Marina Bacelar Silva ◽  
Letícia Grilo de Souza ◽  
Eduardo Shigueyuki Uemura ◽  
...  

Objective: The aim of this study was to compare the bond strength of High-Translucency zirconia (HT) and lithium disilicate dental ceramics, under different surface treatments. Material And Methods: For this, ceramics were divided into groups: Control Group (C) (n = 5), lithium disilicate sheets, conditioned with 10% hydrofluoric acid, followed by application of 37% phosphoric acid, silane and universal adhesive application; Group HTAI (n = 5), HT zirconia sheets were blasted with silica oxide, followed by the application of universal adhesive; Group HTPAI (n = 5), HT zirconia sheets were blasted with silica oxide, followed by the application of non-thermal plasma and universal adhesive and the HTP Group (n = 5), HT zirconia received only the application of non-thermal argon plasma. Subsequently, the specimens of each group were subjected to a cementation process with resin cement, obtaining cylinders. After 24 h of storage, in distilled water, at 37°C, the specimens were subjected to a mechanical micro-shear test. The data obtained were submitted to ANOVA One-way followed by the Tukey test (5%). Results: The HTP Group was excluded from the statistical analysis, as adhesions failed within the storage period. In addition, it was not possible to verify a statistical difference between the control group C and the experimental groups HTAI and HTPAI. Conclusion: The results showed that the applicability of high translucency zirconia can potentially be compared to the lithium disilicate bond strength, when submitted to the same surface treatments, except for the plasma application, which alone was not effective. KEYWORDS Lithium disilicate; Nonthermal plasma; Zirconia ceramic.


2007 ◽  
Vol 35 (4) ◽  
pp. 282-288 ◽  
Author(s):  
M. Peumans ◽  
K. Hikita ◽  
J. De Munck ◽  
K. Van Landuyt ◽  
A. Poitevin ◽  
...  

2015 ◽  
Vol 26 (2) ◽  
pp. 152-155 ◽  
Author(s):  
Christian Alencar Neis ◽  
Nadine Luísa Guimarães Albuquerque ◽  
Ivo de Souza Albuquerque ◽  
Erica Alves Gomes ◽  
Celso Bernardo de Souza-Filho ◽  
...  

The aim of this study was to evaluate the efficacy of different surface conditioning methods on the microtensile bond strength of a restorative composite repair in three types of dental ceramics: lithium disilicate-reinforced, leucite-reinforced and feldspathic. Twelve blocks were sintered for each type of ceramic (n=3) and stored for 3 months in distilled water at 37 °C. The bonding surface of ceramics was abraded with 600-grit SiC paper. Surface treatments for each ceramic were: GC (control) - none; GDB - diamond bur #30 µm; GHF - hydrofluoric acid (10%); GT- tribochemical silica coating (45-μm size particles). Treatments were followed by cleaning with phosphoric acid 37% for 20 s + silane + adhesive. The composite resin was used as restorative material. After repair, samples were subjected to thermocycled ageing (10,000 cycles between 5 °C and 55 °C for 30 s). Thereafter, the samples were sectioned into 1.0 mm2 sticks and tested for microtensile bond strength with 0.5 mm/min crosshead speed. Data were compared by two-way ANOVA and Tukey's test (α=0.05). The superficial wear with diamond bur proved to be suitable for feldspathic porcelain and for leucite-reinforced glass ceramic while hydrofluoric acid-etching is indicated for repairs in lithium disilicate-reinforced ceramic; tribochemical silica coating is applicable to leucite-reinforced ceramic. Predominance of adhesive failures was observed (>85% in all groups). In conclusion, the success of surface treatments depends on the type of ceramic to be repaired.


2018 ◽  
Vol 60 (3) ◽  
pp. 360-366 ◽  
Author(s):  
Serina Taguchi ◽  
Futoshi Komine ◽  
Kei Kubochi ◽  
Ryosuke Fushiki ◽  
Fumiaki Kimura ◽  
...  

2020 ◽  
Vol 45 (4) ◽  
pp. 426-434
Author(s):  
K Kemarly ◽  
SC Arnason ◽  
A Parke ◽  
W Lien ◽  
KS Vandewalle

Clinical Relevance Mechanical surface roughening of the titanium-abutment base is necessary to increase the pull-off bond strength of the lithium disilicate abutment material. Additional chemical surface treatment may further increase the bond strength, but the effects are product specific. SUMMARY Objective: The titanium-cement interface of a Ti-Base implant crown must be able to resist intraoral pull-off forces. The purpose of this study was to evaluate the effect of mechanical and chemical surface treatments of a titanium-abutment base (Ti-Base, Dentsply/Sirona) on the pull-off bond strength of a lithium disilicate abutment coping. Methods and Materials: Ti-Bases were divided into nine groups of 10 copings each that varied in both mechanical surface treatment (none; Al2O3 air abrasion; CoJet silicoating, 3M ESPE) and chemical treatments (none; Monobond Plus, Ivoclar Vivadent; Alloy Primer, Kuraray). Lithium disilicate abutment copings (IPS e.max CAD, Ivoclar Vivadent) were designed and milled. After crystallization, the copings were cemented onto the Ti-Bases with a resin cement (MultiLink Hybrid-Abutment Cement, Ivoclar Vivadent) according to the manufacturer's recommendations. The copings were torqued to a mounted implant, and the access channel was sealed with composite. After 24-hour storage and 2000 thermal-cycles in distilled water, the copings were subjected to a removal force parallel to the long axis of the interface until fracture. Data were analyzed with multiple one-way analyses of variance and Tukey post hoc tests (α=0.05). Results: Significant differences were found between groups based on type of surface treatment (p<0.05). Conclusions: Chemical surface treatment with Monobond Plus and mechanical surface treatment with CoJet silicoating or Al2O3 air abrasion resulted in the greatest pull-off bond strength. Alloy Primer did not provide a statistically significant increased pull-off bond strength when the surfaces were mechanically treated with Al2O3 air abrasion or CoJet silicoating. The lack of any mechanical surface treatment resulted in the lowest pull-off bond strength regardless of the type of chemical surface treatment.


Sign in / Sign up

Export Citation Format

Share Document