scholarly journals Comparative study of cruciate retaining vs posterior stabilized prosthesis in total knee replacement

Author(s):  
Rajan Sarad
2015 ◽  
Vol 2015 ◽  
pp. 1-4
Author(s):  
Juan Felix Astoul Bonorino ◽  
Pablo Ariel Isidoro Slullitel ◽  
Gonzalo Rodrigo Kido ◽  
Santiago Bongiovanni ◽  
Renato Vestri ◽  
...  

Many pathologic entities can produce a painful total knee replacement (TKR) that may lead to potential prosthetic failure. Polyethylene insert dissociation from the tibial baseplate has been described most frequently after mobile-bearing and cruciate-retaining TKRs. However, only 3 tibial insert dislocations in primary fixed-bearing High-Flex posterior-stabilized TKRs have been reported. We present a new case of tibial insert dislocation in a High-Flex model that shares similarities and differences with the cases reported, facilitating the analysis of the potential causes, which still remain undefined.


Author(s):  
Amit M. Mane ◽  
Chadd W. Clary ◽  
Amber N. Reeve ◽  
Lorin P. Maletsky ◽  
Kevin A. Dodd

Many researchers have studied the tibial passive motion, the boundaries of which are defined by various knee ligamentious and bony constraints [1, 2, 3]. The technique has been used in clinical practices and experimental research to assess injury and predict likely surgical outcomes [1, 2]. After total knee replacement surgery (TKR), the implants’ design features and altered ligamentious tension provide the joint constraint and stability. Therefore, the change in passive envelope of motion from the natural condition could be used to observe the altered constraints and stability achieved in TKR knees. The objective of this study was to assess the change in passive envelope of motion after TKR with two implant designs: cruciate retaining and posterior stabilized.


2001 ◽  
Vol 392 ◽  
pp. 208-212 ◽  
Author(s):  
Charles R. Clark ◽  
Cecil H. Rorabeck ◽  
Steven MacDonald ◽  
David MacDonald ◽  
Judy Swafford ◽  
...  

Author(s):  
John Goodfellow ◽  
John O'Connor ◽  
Hemant Pandit ◽  
Christopher Dodd ◽  
David Murray

Having demonstrated in Chapter 2 that a fully conforming mobile bearing can minimise polyethylene wear, in this chapter we show that a mobile bearing prosthesis, unconstrained in the sagittal plane, can restore natural mobility and stability. For surgeon readers who are less interested in the theoretical background, it might be advisable to go straight to Chapter 4, Indications, or to start by reading the final section of this chapter, The Loaded Prosthetic Knee. If that proves interesting, the surgeon might attempt The Unloaded Prosthetic Knee. For the more research minded surgeon or engineer, it seems more logical to start with the Unloaded Natural Knee (the longest section of the chapter) and to read from there. The chapter may also be of interest to those surgeons embarking on the use of a bi-cruciate retaining total knee replacement.


1993 ◽  
Vol 28 (6) ◽  
pp. 1972
Author(s):  
Young Lim ◽  
Jin Goo Kim ◽  
Jae Youl Choi ◽  
Jeong Kook Seo ◽  
Han Suk Ko ◽  
...  

2018 ◽  
Vol 33 (01) ◽  
pp. 078-083
Author(s):  
Matthew G. Teeter ◽  
Kevin Perry ◽  
Xunhua Yuan ◽  
James L. Howard ◽  
Brent A. Lanting

AbstractThe purpose of the present study was to measure the effects of gap balancing and resection techniques on migration of a single total knee replacement implant design. A total of 23 patients (24 knees) were recruited on referral to either a surgeon performing gap balancing or a surgeon performing measured resection and followed prospectively. All patients received a fixed bearing, posterior stabilized total knee replacement implant of a single radius femoral component design with cement fixation, and all aspects of care outside of resection technique were identical. Patients underwent radiostereometric analysis (RSA) at 2 weeks (baseline), 6 weeks, 3 months, 6 months, 1 year, and 2 years. Migration of the tibial and femoral components was compared between groups. Tibial component migration was greater at 2 years in the gap balancing group (mean difference = 0.336 mm, p = 0.036), but there was no difference at 1 year. One measured resection and three gap balancing tibial components demonstrated continuous migration > 0.2 mm between years 1 and 2. There was no difference in femoral component migration. Small differences in tibial component migration were found between the gap balancing and measured resection techniques. However, comparing the migration to established predictive thresholds for long-term loosening risk, implants performed with both techniques were found to have equally low revision risk.


Sign in / Sign up

Export Citation Format

Share Document