scholarly journals Five Level Flying-Capacitor Multilevel Converter Using Dynamic Voltage Restorer (DVR)

Author(s):  
K. Ramakrishna Reddy ◽  
G. Koti Reddy

This paper deals with dynamic voltage restorer (DVR) controlled by a five-level flying-capacitor multi level converter. To decrease the power-quality disturbances in distribution system, such as voltage imbalances, harmonic voltages, and voltage sags. The organisation of this paper has been divided into three parts; the first one eliminates the modulation high-frequency harmonics using filter increase the transient response. The second one deal with the load voltage; and the third is flying capacitors charged with balanced voltages. The MATLAB simulation results effectively for five level flying capacitor multilevel converters charged with balanced voltage regulation.

Author(s):  
K. Ramakrishna Reddy ◽  
G. Koti Reddy

This paper deals with dynamic voltage restorer (DVR) controlled by a five-level flying-capacitor multi level converter. To decrease the power-quality disturbances in distribution system, such as voltage imbalances, harmonic voltages, and voltage sags. The organisation of this paper has been divided into three parts; the first one eliminates the modulation high-frequency harmonics using filter increase the transient response. The second one deal with the load voltage; and the third is flying capacitors charged with balanced voltages. The MATLAB simulation results effectively for five level flying capacitor multilevel converters charged with balanced voltage regulation.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1615
Author(s):  
Mehdi Firouzi ◽  
Saleh Mobayen ◽  
Hossein Shahbabaei Kartijkolaie ◽  
Mojtaba Nasiri ◽  
Chih-Chiang Chen

In this paper, an incorporated bridge-type superconducting fault current limiter (BSFCL) and Dynamic Voltage Restorer (DVR) is presented to improve the voltage quality and limiting fault current problems in distribution systems. In order to achieve these capabilities, the BSFCL and DVR are integrated through a common DC link as a BSFCL-DVR system. The FCL and DVR ports of the BSFCL-DVR system are located in the beginning and end of the sensitive loads’ feeder integrated to the point of common coupling (PCC) in the distribution system. At first, the principle operation of the BSFCL-DVR is discussed. Then, a control system for the BSFCL-DVR system is designed to enhance the voltage quality and limit the fault current. Eventually, the efficiency of the BSFCL-DVR system is verified through the PSCAD/EMTDC simulation.


Author(s):  
Jamal Abdul-Kareem Mohammed ◽  
Arkan Ahmed Hussein ◽  
Sahar R. Al-Sakini

<p>Power distribution network in Iraq still suffers from significant problems regarding electricity distribution level. The most important problem is the disturbances that are occurring on lines voltages, which in turn, will negatively affect sensitive loads they feed on. Protection of these loads could be achieved efficiently and economically using the dynamic voltage restorer DVR when installed between the voltage source and load to inject required compensation voltage to the network during the disturbances period. The DVR mitigates these disturbances via restoring the load voltage to a pre-fault value within a few milliseconds. To control the DVR work, dq0 transformation concept and PID method with sinusoidal pulse-width modulation SPWM based converter had been used to correct the disturbances and thus enhance the power quality of the distribution network. The DVR performance was tested by MATLAB/Simulink with all kinds of expected voltage disturbances and results investigated the effectiveness of the proposed method.</p>


Author(s):  
A. Sathik Basha ◽  
M. Ramasamy

Increased utilization of nonlinear loads in the power distribution system with profound integration of renewable energy requires improved power quality control. This paper proposes a Reformed Second Order Generalized Integrated (R-SOGI) control scheme for enhancing the output of the Dynamic Voltage Restorer (DVR) for the objective of achieving the desired sinusoidal voltage wave shape at the common point of services and harmonic reduction. The DVR incorporates a Solar Photovoltaic (SPV) system using the Z-source Inverter (ZSI), providing the necessary active power to mitigate the voltage sag/swell and power demand. ZSI offers step-down as well as step-up abilities, it makes the converters to operate in the conditions of shoot-through. Therefore, the application of ZSI-based DVR topology seems very promising. The compensating reference voltage is generated by the R-SOGI algorithm, which offers superior output under conditions for grid voltage irregularities, including voltage sag/swell and unbalanced and distorted utility grid voltages. In comparison to DVR based on the VSI voltage inverter (VSI), the response from ZSI-DVR to a reduction of voltage distortions and harmonics is investigated. An experimental SPV ZSI-DVR prototype is developed in the laboratory to check the effectiveness of the controller and is tested under balanced and unbalanced supply and dynamic load conditions.


2016 ◽  
Vol 818 ◽  
pp. 52-57 ◽  
Author(s):  
Faridullah Kakar ◽  
Abdullah Asuhaimi bin Mohd Zin ◽  
Mohd Hafiz bin Habibuddin

Voltage sag and harmonics are the most frequent power quality problems faced by industrial and commercial customers today. Situation has been aggravated by modern sensitive industrial equipments which introduce system harmonics due to their inherent V-I characteristics. In this paper, proportional integral (PI) control technique based dynamic voltage restorer (DVR) is implemented in power distribution system to suppress voltage sag and harmonics under linear, non-linear and induction motor load conditions. Real-time power distribution system and DVR test models are built in Matlab/Simulink software. Simulation results exhibit excellent PI control approach with effective performance yielding excellent voltage regulation.


Sign in / Sign up

Export Citation Format

Share Document