scholarly journals Effect of Vertical Canard Location on Skin Friction Drag

Author(s):  
Padakanti Saisuryateja ◽  
Y. D Dwivedi ◽  
Raju Santhani ◽  
Abrar MD ◽  
VENKATA SAI BHANUDEEP GANDLA

This study investigates the viscous skin friction drag generation due to the three different vertical canard locations on the mid winger un-swept aircraft scaled-down model by using boundary layer measurements in the wind tunnel. The N22 airfoil was selected for the canard and the modified S1223 airfoil was selected for the wing. The laser cutting technique was employed for the fabrication of the wing, and canard airfoils, which gave sufficient dimensional accuracy to the model. The canard, wing, and fuselage were fabricated by balsa wood and strengthened by Aluminum stripes. The assembled model is tested in an open subsonic wind tunnel a fixed chord Reynolds number 3.8*106. The boundary layers were measured at 70% of the chord and at three different wingspan locations i.e. 30%, 60%, and 90% with 00 incidence angle. The canards were positioned at three vertical positions one at fuselage reference line (FRL) and the remaining two locations at ± 0.16 c from the FRL. The results were compared with wing-body alone and with three canard locations and found that the high canard configuration outperformed the other two configurations and also wing-body alone configuration as it provides half of the total drag. However, the high canard produces 15% more drag than the wing-body alone at the wing tip (90%).The aerodynamic performance of the high canard configuration was found to be significantly promising for the future use in drones and other small aircrafts.

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 2
Author(s):  
Zbigniew Czyż ◽  
Paweł Karpiński ◽  
Krzysztof Skiba ◽  
Mirosław Wendeker

The geometry of a propeller is closely related to its aerodynamic performance. One of the geometric parameters of a propeller is pitch. This parameter determines the distance by which the propeller moves forward during one revolution. The challenge is to select a propeller geometry for electric propulsion in order to achieve the best possible performance. This paper presents the experimental results of the aerodynamic performance of the set of propellers with different pitch values. The tests were performed in a closed-circuit subsonic wind tunnel using a six-component force balance. The analyzed propellers were 12-inch diameter twin-blade propellers that were driven by a BLDC (brushless direct current) electric motor. The tests were performed under forced airflow conditions. The thrust and torque produced by the propeller were measured using a strain gauge. The analysis was performed for different values of the advance ratio which is the ratio of freestream fluid speed to propeller tip speed. Additionally, a set of electrical parameters was recorded using the created measurement system. The propeller performance was evaluated by a dimensional analysis. This method enables calculation of dimensionless coefficients which are useful for comparing performance data for propellers.


2020 ◽  
Vol 92 (6) ◽  
pp. 827-836 ◽  
Author(s):  
Prasad G. ◽  
Bruce Ralphin Rose J.

Purpose The purpose of this paper is to analyse an actual representation of ice accretions, which are important during the certification process. Design/methodology/approach Ice accretion experiments are conducted in a low-speed subsonic wind tunnel testing facility to evaluate the influence of various ice shapes around the airfoil sections. Ice accumulation changes the shapes of local airfoil sections and thereby affects the aerodynamic performance characteristics of the considered NACA 23012 profile. The ice profiles are impregnated using balsa wood with glace, horn and mixed ice accretion cases for the detailed experimental investigation. Findings Computational fluid dynamics analysis is done to compute the influence of different ice shapes on the aerodynamic coefficients (Cl and Cd) while ice accretion occurs at the leading edge of the airfoil sections. It is observed that the Cl and Cd modified immediately more than 40% as compared to the clean wing configuration. In the same fashion, the skin friction coefficient also abruptly changes for different ice shapes that have the potential to induce flutter at the critical speed of the airplane. The computational solutions are further validated through wind tunnel experiments and recent literature concerning certification for flight in icing conditions. Social implications The ice accretion study on the aerodynamic surfaces can also be extended for wind turbine blades installed at different cold regions around the globe. Further, the propeller icing influences the entire rotorcraft aerodynamics at low temperature conditions and the findings of this study are strongly connected with such problems. Originality/value The aerodynamic characteristics of the baseline airfoil are greatly affected by the ice accretion problem. Although flight through icing condition endures for a short duration, the takeoff path and decision speed are determined based on airplane drag as per federal aviation regulations. Hence, the proposed study is focussed on a cost-effective approach to predict the effect of ice accretion to achieve optimum performance.


2016 ◽  
Vol 53 ◽  
pp. 136-153 ◽  
Author(s):  
Oliviu Şugar Gabor ◽  
Andreea Koreanschi ◽  
Ruxandra Mihaela Botez ◽  
Mahmoud Mamou ◽  
Youssef Mebarki

2013 ◽  
Vol 690-693 ◽  
pp. 2722-2725
Author(s):  
Mu Qing Yang ◽  
Dong Li Ma ◽  
Ya Feng Liu ◽  
Wen Yue Li

Study on flow field of civil transport upswept aft-body is of much value as the drag coursed by aft-body contributes to about 10 percent of total drag. Currently researches were mostly concerned on clean fuselage, while little emphasis was put on fuse-tail configuration. With interests to exploiting the effect of design parameters on fuselage with empennage, computational fluid dynamics (CFD) was used to simulate the flow field of fuselages with different parameters. Based on studying the aerodynamic performance of clean fuselages, emphases were placed on fuse-tail configurations. Although fairing at root of stabilizer is good for reducing pressure drag, influence on friction drag should be taken into consideration when determine the design of fairing. With stabilizer mounted, drag of axial symmetric fuselage is not the minimum, while the one with some angle upswept is drag optimal.


Sign in / Sign up

Export Citation Format

Share Document