scholarly journals AN OPTIMIZED ARM SCHEME FOR DISTINCT NETWORK DATA SET

Author(s):  
K.GANESH KUMAR ◽  
H.VIGNESH RAMAMOORTHY ◽  
M.PREM KUMAR ◽  
S. SUDHA

Association rule mining (ARM) discovers correlations between different item sets in a transaction database. It provides important knowledge in business for decision makers. Association rule mining is an active data mining research area and most ARM algorithms cater to a centralized environment. Centralized data mining to discover useful patterns in distributed databases isn't always feasible because merging data sets from different sites incurs huge network communication costs. In this paper, an improved algorithm based on good performance level for data mining is being proposed. In local sites, it runs the application based on the improved LMatrix algorithm, which is used to calculate local support counts. Local Site also finds a center site to manage every message exchanged to obtain all globally frequent item sets. It also reduces the time of scan of partition database by using LMatrix which increases the performance of the algorithm. Therefore, the research is to develop a distributed algorithm for geographically distributed data sets that reduces communication costs, superior running efficiency, and stronger scalability than direct application of a sequential algorithm in distributed databases.

2018 ◽  
Vol 7 (2) ◽  
pp. 100-105
Author(s):  
Simranjit Kaur ◽  
Seema Baghla

Online shopping has a shopping channel or purchasing various items through online medium. Data mining is defined as a process used to extract usable data from a larger set of any raw data. The data set extraction from the demographic profiles and Questionnaire to investigate the gathered based by association. The method for shopping was totally changed with the happening to internet Technology. Association rule mining is one of the important problems of data mining has been used here. The goal of the association rule mining is to detect relationships or associations between specific values of categorical variables in large data sets.


A Data mining is the method of extracting useful information from various repositories such as Relational Database, Transaction database, spatial database, Temporal and Time-series database, Data Warehouses, World Wide Web. Various functionalities of Data mining include Characterization and Discrimination, Classification and prediction, Association Rule Mining, Cluster analysis, Evolutionary analysis. Association Rule mining is one of the most important techniques of Data Mining, that aims at extracting interesting relationships within the data. In this paper we study various Association Rule mining algorithms, also compare them by using synthetic data sets, and we provide the results obtained from the experimental analysis


2014 ◽  
Vol 23 (05) ◽  
pp. 1450004 ◽  
Author(s):  
Ibrahim S. Alwatban ◽  
Ahmed Z. Emam

In recent years, a new research area known as privacy preserving data mining (PPDM) has emerged and captured the attention of many researchers interested in preventing the privacy violations that may occur during data mining. In this paper, we provide a review of studies on PPDM in the context of association rules (PPARM). This paper systematically defines the scope of this survey and determines the PPARM models. The problems of each model are formally described, and we discuss the relevant approaches, techniques and algorithms that have been proposed in the literature. A profile of each model and the accompanying algorithms are provided with a comparison of the PPARM models.


2010 ◽  
Vol 108-111 ◽  
pp. 50-56 ◽  
Author(s):  
Liang Zhong Shen

Due to the popularity of knowledge discovery and data mining, in practice as well as among academic and corporate professionals, association rule mining is receiving increasing attention. The technology of data mining is applied in analyzing data in databases. This paper puts forward a new method which is suit to design the distributed databases.


2013 ◽  
Vol 327 ◽  
pp. 197-200
Author(s):  
Guo Fang Kuang ◽  
Ying Cun Cao

The material is used by humans to manufacture the machines, components, devices and other products of substances. Association rules originated in the field of data mining, people use it to find large amounts of data between itemsets of the association. Apriori is a breadth-first algorithm to obtain the support is greater than the minimum support of frequent itemsets by repeatedly scanning the database. This paper presents the construction of materials science and information model based on association rule mining. Experimental data sets prove that the proposed algorithm is effective and reasonable.


Author(s):  
Mafruz Zaman Ashrafi

Data mining is an iterative and interactive process that explores and analyzes voluminous digital data to discover valid, novel, and meaningful patterns (Mohammed, 1999). Since digital data may have terabytes of records, data mining techniques aim to find patterns using computationally efficient techniques. It is related to a subarea of statistics called exploratory data analysis. During the past decade, data mining techniques have been used in various business, government, and scientific applications. Association rule mining (Agrawal, Imielinsky & Sawmi, 1993) is one of the most studied fields in the data-mining domain. The key strength of association mining is completeness. It has the ability to discover all associations within a given dataset. Two important constraints of association rule mining are support and confidence (Agrawal & Srikant, 1994). These constraints are used to measure the interestingness of a rule. The motivation of association rule mining comes from market-basket analysis that aims to discover customer purchase behavior. However, its applications are not limited only to market-basket analysis; rather, they are used in other applications, such as network intrusion detection, credit card fraud detection, and so forth. The widespread use of computers and the advances in network technologies have enabled modern organizations to distribute their computing resources among different sites. Various business applications used by such organizations normally store their day-to-day data in each respective site. Data of such organizations increases in size everyday. Discovering useful patterns from such organizations using a centralized data mining approach is not always feasible, because merging datasets from different sites into a centralized site incurs large network communication costs (Ashrafi, David & Kate, 2004). Furthermore, data from these organizations are not only distributed over various locations, but are also fragmented vertically. Therefore, it becomes more difficult, if not impossible, to combine them in a central location. Therefore, Distributed Association Rule Mining (DARM) emerges as an active subarea of data-mining research. Consider the following example. A supermarket may have several data centers spread over various regions across the country. Each of these centers may have gigabytes of data. In order to find customer purchase behavior from these datasets, one can employ an association rule mining algorithm in one of the regional data centers. However, employing a mining algorithm to a particular data center will not allow us to obtain all the potential patterns, because customer purchase patterns of one region will vary from the others. So, in order to achieve all potential patterns, we rely on some kind of distributed association rule mining algorithm, which can incorporate all data centers. Distributed systems, by nature, require communication. Since distributed association rule mining algorithms generate rules from different datasets spread over various geographical sites, they consequently require external communications in every step of the process (Ashrafi, David & Kate, 2004; Assaf & Ron, 2002; Cheung, Ng, Fu & Fu, 1996). As a result, DARM algorithms aim to reduce communication costs in such a way that the total cost of generating global association rules must be less than the cost of combining datasets of all participating sites into a centralized site.


Author(s):  
KAPIL SHARMA ◽  
SHEVETA VASHISHT

In this research work we use rule induction in data mining to obtain the accurate results with fast processing time. We using decision list induction algorithm to make order and unordered list of rules to coverage of maximum data from the data set. Using induction rule via association rule mining we can generate number of rules for training dataset to achieve accurate result with less error rate. We also use induction rule algorithms like confidence static and Shannon entropy to obtain the high rate of accurate results from the large dataset. This can also improves the traditional algorithms with good result.


2013 ◽  
Vol 4 (1) ◽  
pp. 135-145
Author(s):  
Kapil Sharma ◽  
Sheveta Vashisht ◽  
Heena Sharma ◽  
Jasreena kaur Bains ◽  
Richa Dhiman

Data Mining: extracting useful insights from large and detailed collections of data. With the increased possibilities in modern society for companies and institutions to gather data cheaply and efficiently, this subject has become of increasing importance. This interest has inspired a rapidly maturing research field with developments both on a theoretical, as well as on a practical level with the availability of a range of commercial tools. In this research work we use rule induction in data mining to obtain the accurate results with fast processing time. We using decision list induction algorithm to make order and unordered list of rules to coverage of maximum data from the data set. Using induction rule via association rule mining we can generate number of rules for training dataset to achieve accurate result with less error rate. We also use induction rule algorithms like confidence static and Shannon entropy to obtain the high rate of accurate results from the large dataset. This can also improves the traditional algorithms with good result.


2017 ◽  
Vol 26 (1) ◽  
pp. 139-152
Author(s):  
◽  
M. Umme Salma

AbstractRecent advancements in science and technology and advances in the medical field have paved the way for the accumulation of huge amount of medical data in the digital repositories, where they are stored for future endeavors. Mining medical data is the most challenging task as the data are subjected to many social concerns and ethical issues. Moreover, medical data are more illegible as they contain many missing and misleading values and may sometimes be faulty. Thus, pre-processing tasks in medical data mining are of great importance, and the main focus is on feature selection, because the quality of the input determines the quality of the resultant data mining process. This paper provides insight to develop a feature selection process, where a data set subjected to constraint-governed association rule mining and interestingness measures results in a small feature subset capable of producing better classification results. From the results of the experimental study, the feature subset was reduced to more than 50% by applying syntax-governed constraints and dimensionality-governed constraints, and this resulted in a high-quality result. This approach yielded about 98% of classification accuracy for the Breast Cancer Surveillance Consortium (BCSC) data set.


Author(s):  
Shivangee Agrawal ◽  
Nivedita Bairagi

Data mining, also identified as knowledge discovery in databases has well-known its place as an important and significant research area. The objective of data mining (DM) is to take out higher-level unknown detail from a great quantity of raw data. DM has been used in a variety of data domains. DM can be considered as an algorithmic method that takes data as input and yields patterns, such as classification rules, itemsets, association rules, or summaries, as output. The ’classical’ associations rule issue manages the age of association rules by support portraying a base level of confidence and support that the roduced rules should meet. The most standard and classical algorithm used for ARM is Apriori algorithm. It is used for delivering frequent itemsets for the database. The essential thought behind this algorithm is that numerous passes are made the database. The total usage of association rule strategies strengthens the knowledge management process and enables showcasing faculty to know their customers well to give better quality organizations. In this paper, the detailed description has been performed on the Genetic algorithm and FP-Growth with the applications of the Association Rule Mining.


Sign in / Sign up

Export Citation Format

Share Document