scholarly journals Improvement of Power Quality Considering Voltage Stability in Grid Connected System by FACTS Devices

Author(s):  
Sarika D. Patil

Recently the wind power generation has attracted special interest and many wind power stations are being in service in the world. In the wind turbine that mostly uses induction generators, tend to drain large amounts of Vars from the grid, potentially causing low voltage and may be voltage stability problems for the utility owner, especially in the case of large load variation on distribution feeder. Voltage-source converter based various FACTS devices have been used for flexible power flow control, secure loading and damping of power system oscillations. Some of those are used also to improve transient and dynamic stability of the wind power generation (WPGS).

Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1043 ◽  
Author(s):  
Arsalan Abdollahi ◽  
Ali Ghadimi ◽  
Mohammad Miveh ◽  
Fazel Mohammadi ◽  
Francisco Jurado

This paper deals with investigating the Optimal Power Flow (OPF) solution of power systems considering Flexible AC Transmission Systems (FACTS) devices and wind power generation under uncertainty. The Krill Herd Algorithm (KHA), as a new meta-heuristic approach, is employed to cope with the OPF problem of power systems, incorporating FACTS devices and stochastic wind power generation. The wind power uncertainty is included in the optimization problem using Weibull probability density function modeling to determine the optimal values of decision variables. Various objective functions, including minimization of fuel cost, active power losses across transmission lines, emission, and Combined Economic and Environmental Costs (CEEC), are separately formulated to solve the OPF considering FACTS devices and stochastic wind power generation. The effectiveness of the KHA approach is investigated on modified IEEE-30 bus and IEEE-57 bus test systems and compared with other conventional methods available in the literature.


2020 ◽  
Vol 186 ◽  
pp. 01005
Author(s):  
A. Ahmed Hossam-Eldin ◽  
Emtethal Negm ◽  
Mohamed S Elgamal ◽  
Kareem M AboRas

Multi-level voltage source converter is integrated in various fields in renewable energy power generation technologies such as wind and solar sources for applications that need higher voltage and higher power. In wind power generation market, doubly fed induction generator (DFIG) based on wind power generation is now the leading technology as they are economically feasible, they do offer a variable speed and efficient substitute to the fossil fuel. This paper proposes a DFIG based on a back to back diode clamped multilevel converter systems (DCMLI) fired comparatively by sinusoidal pulse width modulation (SPWM) and third harmonic injection pulse width modulation (THIPWM) techniques. By using these technologies, the DFIG performance is compared for different wind speeds under normal operation condition. The proposed approach shows that the DCMLI systems generate a near sinusoidal voltage with lower values in total harmonic distortion (THD) thus, upgrading the power quality that is produced by DFIG. Lastly, the variation of frequency of induced rotor voltage and the active power flow due to the wind speed changes when the rotor speed changes from super synchronous to sub synchronous speeds is investigated.


Sign in / Sign up

Export Citation Format

Share Document