scholarly journals OPTIMAL PLACEMENT OF FLEXIBLE ALTERNATING CURRENT TRANSMISSION SYSTEM (FACTS) DEVICES FOR STATIC VOLTAGE STABILITY ENHANCEMENT

Author(s):  
ANJU GUPTA ◽  
P. R. SHARMA

This Voltage stability problems increasing day by day because of demand increase. It is very important to analyze the power system with respect to voltage stability. Location of FACTS devices is important for the enhancement of voltage stability. This paper investigates the voltage stability analysis of 14 bus systems by optimally locating Flexible AC Transmission System (FACTS) devices. Shunt and series FACTS controllers are introduced in the weakest bus and its effectiveness is assessed by comparing voltage profile and loading margins enhancement. It is shown that best location for static voltage stability margin is the “weakest bus” of the system. Continuation power flow (CPF) is done with PSAT (power system stability analysis Toolbox).

2015 ◽  
Vol 4 (1) ◽  
pp. 68-84 ◽  
Author(s):  
B. Venkateswara Rao ◽  
G.V. Nagesh Kumar

Modern electric power utilities are facing many challenges due to increasing power demand but the growth of power generation and transmission has been limited due to limited resources, environmental restrictions and right-of-way problems. These problems can be minimized by installing Flexible Alternating Current Transmission System (FACTS) devices in modern electric utilities to optimize the existing transmission system. Most effective use of the FACTS devices depend on the fact, how these devices are placed in the power system, i.e. the location and size. An optimal location and size of FACTS devices allows controlling its power flows and thus enhances the stability and reliability of the power systems. In this paper, Firefly Algorithm (FA) and BAT Algorithm (BAT) have been applied and compared to determine the optimal location and size of Static VAR Compensator (SVC) in a power system to improve voltage stability subjected to minimize the active power losses, fuel cost, branching loading and voltage deviation. The effectiveness of the proposed algorithms and improvement of power system stability has been demonstrated on IEEE 57 bus system using fast voltage stability index. The results obtained with variation of parameters of Firefly and BAT Algorithms has been studied and compared with Genetic Algorithm. The results are presented and analyzed.


2011 ◽  
Vol 110-116 ◽  
pp. 5200-5205 ◽  
Author(s):  
J. Hamad ◽  
K. El-Bahrawy ◽  
R. Sharkawy

This paper investigates voltage stability of the power system during steady state and transient conditions. The voltage stability enhancement is achieved by utilizing FACTS devices at the best location of the system. The weakest bus in the system is the best location to implement shunt compensation device. In this paper, the weakest buses are identified via a fuzzy technique that utilizes two critical indices: Line Flow Index (LFI) and Voltage Profile Index (VPI) during normal and fault conditions. These indices are used to evaluate Criticality Index (CI) using Fuzzy rules, and thus, the system buses are ranked. Remedial actions are discussed to enhance the power system voltage stability by using FACTS devices (SVC and STATCOM) at the most vulnerable system buses. The results of this study show that the (STATCOM) performance is preferable to that of the (SVC) during fault conditions.


2014 ◽  
Vol 984-985 ◽  
pp. 1286-1294
Author(s):  
R. Arun Prasath ◽  
M. Vimalraj ◽  
M. Riyas Ahamed ◽  
K. Srinivasa Rao

This paper presents a graphical user interface (GUI) uses Particle Swarm Optimization (PSO), which is used to find the optimal locations and sizing parameters of multi type Flexible AC transmission systems (FACTS) devices in complex power systems. The GUI toolbox, offers user to choose a power system network, PSO settings and the type and number of FACTS devices for the selected network. In this paper, three different FACTS devices are implemented: SVC, TCSC and TCPST. FACTS devices are used to increase the system loadability, by reducing power flow on overloaded lines, transmission line losses, improving system stability and security. With this can make the transmission system more energy-efficient. PSO used here for optimally allocating and sizing the multiple type FACTS in a standardized power network (IEEE 30 bus system) in order to improve voltage profile, minimizing power system total losses and maximizing system loadability with respect to the size of FACTS.


Author(s):  
Ghassan Abdullah Salman ◽  
Hatim G. Abood ◽  
Mayyadah Sahib Ibrahim

The detection of potential voltage collapse in power systems is essential to maintain the voltage stability in heavy load demand. This paper proposes a method to detect weak buses in power systems using two stability indices: the voltage stability margin factor (dS/dY) and the voltage collapse prediction index (VCPI). Hence, the paper aims to improve the voltage stability of Iraqi transmission grid by allocating FACTS devices in the optimal locations and optimal sizes. Two types of FACTS are used in this paper which are Thyristor controlled series compensator (TCSC) and static var compensator (SVC). The objective function of the problem is fitted using particle swarm optimization (PSO). The proposed method is verified using simulation test on Diyala-132 kV network which is a part of the Iraqi power system. The results observed that improvement the voltage stability margin, the voltage profile of Diyala-132 kV is increased and the power losses is decreased.


2019 ◽  
Vol 14 (1) ◽  
pp. 5-11
Author(s):  
S. Rajasekaran ◽  
S. Muralidharan

Background: Increasing power demand forces the power systems to operate at their maximum operating conditions. This leads the power system into voltage instability and causes voltage collapse. To avoid this problem, FACTS devices have been used in power systems to increase system stability with much reduced economical ratings. To achieve this, the FACTS devices must be placed in exact location. This paper presents Firefly Algorithm (FA) based optimization method to locate these devices of exact rating and least cost in the transmission system. Methods: Thyristor Controlled Series Capacitor (TCSC) and Static Var Compensator (SVC) are the FACTS devices used in the proposed methodology to enhance the voltage stability of power systems. Considering two objectives of enhancing the voltage stability of the transmission system and minimizing the cost of the FACTS devices, the optimal ratings and cost were identified for the devices under consideration using Firefly algorithm as an optimization tool. Also, a model study had been done with four different cases such as normal case, line outage case, generator outage case and overloading case (140%) for IEEE 14,30,57 and 118 bus systems. Results: The optimal locations to install SVC and TCSC in IEEE 14, 30, 57 and 118 bus systems were evaluated with minimal L-indices and cost using the proposed Firefly algorithm. From the results, it could be inferred that the cost of installing TCSC in IEEE bus system is slightly higher than SVC.For showing the superiority of Firefly algorithm, the results were compared with the already published research finding where this problem was solved using Genetic algorithm and Particle Swarm Optimization. It was revealed that the proposed firefly algorithm gives better optimum solution in minimizing the L-index values for IEEE 30 Bus system. Conclusion: The optimal placement, rating and cost of installation of TCSC and SVC in standard IEEE bus systems which enhanced the voltage stability were evaluated in this work. The need of the FACTS devices was also tested during the abnormal cases such as line outage case, generator outage case and overloading case (140%) with the proposed Firefly algorithm. Outputs reveal that the recognized placement of SVC and TCSC reduces the probability of voltage collapse and cost of the devices in the transmission lines. The capability of Firefly algorithm was also ensured by comparing its results with the results of other algorithms.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Natakorn Thasnas ◽  
Apirat Siritaratiwat

Nowadays, the changes of economic, environment, and regulations are forcing the electric utilities to operate systems at maximum capacity. Therefore, the operation and control of power system to improve the system stability has been receiving a great deal of attention. This paper presents an approach for enhancing the static voltage stability margin and reducing the power losses of the system with voltage security-constrained optimal power flow (VSC-OPF) that is based on static line voltage stability indices. The control approaches incorporate the voltage stability criteria into the conventional OPF. The minimization of the summation of fast voltage stability index (FVSI), line stability index (Lmn), and line voltage stability index (LVSI) is used as the objective functions. The performance and effectiveness of the proposed control approaches are evaluated on the standard IEEE 30-bus, 57-bus, and 118-bus test systems under normal and contingency conditions. The comparison analysis is carried out with different cases including minimization of generation cost. The proposed control approaches indicate the promising results and offer efficient countermeasures against the voltage instability of the system.


Author(s):  
Naraina Avudayappan ◽  
S.N. Deepa

Purpose The loading and power variations in the power system, especially for the peak hours have abundant concussion on the loading patterns of the open access transmission system. During such unconditional state of loading the transmission line parameters and the line voltages show a substandard profile, which depicts exaction of congestion management of the power line in such events. The purpose of this paper is to present an uncomplicated and economical model for congestion management using flexible AC transmission system (FACTS) devices. Design/methodology/approach The approach desires a two-step procedure, first by optimal placement of thyristor controlled series capacitor (TCSC) and static VAR compensator (SVC) as FACTS devices in the network; second tuning the control parameters to their optimized values. The optimal location and tuning of TCSC and SVC represents a hectic optimization problem, due to its multi-objective and constrained nature. Hence, a reassuring heuristic optimization algorithm inspired by behavior of cat and firefly is employed to find the optimal placement and tuning of TCSC and SVC. Findings The effectiveness of the proposed model is tested through simulation on standard IEEE 14-bus system. The proposed approach proves to be better than the earlier existing approaches in the literature. Research limitations/implications With the completed simulation and results, it is proved that the proposed scheme has reduced the congestion in line, thereby increasing the voltage stability along with improved loading capability for the congested lines. Practical implications The usefulness of the proposed scheme is justified with the computed results, giving convenience for implementation to any practical transmission network. Originality/value This paper fulfills an identified need to study exaction of congestion management of the power line.


2021 ◽  
Vol 1 (1) ◽  
pp. 32-44
Author(s):  
Sagar Dharel ◽  
Rabindra Maharjan

Government of Nepal has realized that wind energy could become a major source of alternative energy to solve energy crisis in the country as well as serve the purpose of energy mix. Various studies have identified several locations with potential for wind power generation in Nepal. The integration of wind power plant to the national grid, however, raises concerns regarding the power system stability. The voltage stability of the grid is a key issue, the effect on which increases with the increase in wind power penetration in the grid. This study performs voltage stability analysis due to high penetration of wind power in Integrated Nepalese Power System (INPS). Both steady state and dynamic stability study is performed using the power system simulation software DigSILENT/PowerFactory for different types of wind turbine generators.


2021 ◽  
Author(s):  
Umang Patel

Power system stability is gaining importance because of unusual growth in power system. Day by day use of nonlinear load and other power electronics devices created distortions in the system which creates problems of voltage instability. Voltage stability of system is major concerns in power system stability. When a transmission network is operated near to their voltage stability limit it is difficult to control active-reactive power of the system. Our objectives are the analysis of voltage stability margin and active-reactive power control in proposed system which includes model of STATCOM with aim to analyse its behavior to improve voltage stability margin and active-reactive power control of the system under unbalanced condition. The study has been carried out using MATLAB Simulation program on three phase system connected to unbalanced three phase load via long transmission network and results of voltage and active-reactive power are presented. In future work, we can do power flow calculation of large power system network and find the weakest bus of the system and by placing STATCOM at that bus we can improve over all stability of the system


Sign in / Sign up

Export Citation Format

Share Document